大脑衰老或是这个基因在作怪
随着老龄化社会的到来,大脑衰老成为人们日益关心的话题。中国科学院昆明动物所研究人员利用来自4只年轻猕猴、3只老年猕猴44个脑区的547个转录组数据,研究了非人灵长类动物大脑老化的潜在分子遗传机制,并找到可能导致大脑衰老的新标记基因。研究成果发表在最新一期国际期刊《基因组生物学》上。
昆明动物研究所灵长类进化遗传与发育学科组成员李明莉介绍,大脑衰老是一个复杂的过程,它依赖于多个脑区的精确调控,而以往的研究通常集中于少数脑区,缺乏一个涵盖多个脑区的转录图谱来解析大脑衰老背后的分子机制。
研究人员基于这些大规模转录组数据分析发现,随着年龄增长,皮质内脑区之间的表达连接性以及皮质内左右脑半球之间的表达连接性都在明显下降。在各个脑区中,基因表达和选择性剪接通过不同的机制来调控大脑衰老,而不同脑区之间老化的分子机制大同小异。
通过对老年猕猴的转录组数据基因共表达网络分析,研究人员发现了9个在老年猴中表现出连接性增强的模块,并解析出一个网络关键驱动基因PGLS,在老年猴中表达上调,可能对大脑衰老有重要作用。通过在小鼠体内过表达PGLS,发现可导致小鼠出现衰老的表型,例如认知能力下降,运动能力下降和厌食等等。进一步的生物学实验也证明,PGLS过表达导致突触丢失和细胞凋亡。因此,研究人员推断它很可能是大脑衰老的一个新的标记基因。
据悉,这是依托“模式动物表型与遗传研究国家重大科技基础设施(灵长类)”建设开展的一项研究工作。这一设施将对灵长类动物表型与遗传型进行系统研究,快速、精准深入解析生命现象变化中的表型与内在的遗传关系,对生命科学与医药健康领域研究具有重要意义。(生物谷Bioon.com)
首款”矫正型”基因疗法获一致认可,有望3个月内问世
Developmental Cell:基因转录调控研究取得进展
近日,中国科学技术大学生命科学学院教授单革实验室研究发现,秀丽线虫中两个高度保守的转录因子UNC-30和UNC-55,共调控包括cAMP通路、微小RNA(microRNA)和长链非编码RNA(lncRNA)等在内的数以千计的靶基因的表达,从而调控D型运动神经元的发育和可塑性。研究论文近日发表在《发育细胞》(Developmental Cell)上。
为了获知这两个转录因子在D型运动神经元中的所有靶基因,该实验室首先利用CRISPR-Cas9技术将GFP分别插入到unc-30和unc-55基因的末端,得到表达UNC-30::GFP和UNC-55::GFP融合蛋白的秀丽线虫,再对利用所获秀丽线虫进行ChIP(染色质免疫共沉淀)实验。通过对原有ChIP实验方法进行改进和优化,克服了两个转录因子秀丽线虫中表达量小、表达时间窗口短、表达的D型神经元细胞占秀丽线虫细胞比例少(约占2%)等瓶颈,完成了ChIP实验,拿到了可供高通量测序(ChIP-seq)的DNA样品。这是第一次实现了在多细胞动物中原位表达水平转录因子的ChIP-seq实验。转录因子是调控细胞中从DNA上读取信息转录产生RNA的一大类蛋白质因子,针对特定转录因子的ChIP-seq实验,可以在全基因组水平获知受其调控的所有靶基因。
该研究揭示这两个转录因子各自均调控2000多个基因(秀丽线虫约有2万个基因)的表达,它们共同调控1300多个编码和非编码基因的表达。这些靶基因在对神经元发育和可塑性具有重要调控作用的多个信号通路中行使功能。其中一个通路是决定环腺苷酸(cAMP)浓度的cAMP代谢通路。为了直接观测活体秀丽线虫细胞中的cAMP浓度变化,研究人员开创性地将用于哺乳动物细胞中检测cAMP水平的探针改造为在活体秀丽线虫中也可以使用工具。进一步的研究揭示,这两个在动物界高度保守的转录因子通过调节神经元中的基因表达,调控了细胞中cAMP的浓度,进而在时间上影响D型运动神经元发育和可塑性的进程。此外,UNC-30和UNC-55是从秀丽线虫到人均具有的高度保守的转录因子,从全基因组水平上获得了UNC-30和UNC-55调控的靶基因,为进一步探索动物细胞中转录因子调控网络提供了重要基础。
研究工作得到了科技部、中科院、国家基金委以及中国科大非编码RNA功能及功能机理创新团队的支持。(生物谷Bioon.com)
Nat Genet:新方法可校正CRISPR筛选的癌症基因依赖性数据中的假阳性
2017年11月3日/生物谷BIOON/—在一项新的研究中,布罗德癌症依赖性图谱(Broad Cancer Dependency Map)团队将来自342种癌细胞系的基于CRISPR的数据添加到他们不断增加的癌症基因依赖性目录中,并且提供一种新的方法来确保这些数据的准确性。相关研究结果于2017年10月30日在线发表在Nature Genetics期刊上,论文标题为“Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells”。
基于CRISPR的全基因组敲除筛选是确定细胞基因依赖性—也就是细胞存活和/或增殖所需的基因—的强大工具。然而,这样的CRISPR筛选对一种被称作拷贝数效应(copy number effect)的现象较为敏感。拷贝数效应指的是细胞中重复复制的基因(正如癌细胞中经常发生的那样)不管是不是必需基因,都会被标记为必需基因。
为了限制这些假阳性结果,布罗德癌症依赖性图谱计划—一个将来自布罗德癌症项目的阿喀琉斯计划团队和癌症数据科学团队、布罗德研究所基因扰动平台和其他的布罗德研究所团队的研究人员召集在一起的联合计划—开发出一种被称作CERES的计算方法,该方法可对汇集的CRISPR筛选数据进行拷贝数效应校正,并且针对癌细胞的基因依赖性提供给一种无偏见的看法。
正如布罗德癌症依赖性图谱团队在这项研究中报道的那样,他们利用CERES对来自342种癌细胞系的全基因组CRISPR-Cas9筛选数据(迄今为止产生的最大CRISPR敲除数据集)进行校准,这些癌细胞系是由布罗德-诺华癌细胞系百科全书(Broad-Novartis Cancer Cell Line Encyclopedia, CCLE)进行管理的。这种方法极大地降低这些数据中的假阳性结果,准确地找到了已知的基因依赖性(如KRAS基因突变),并且允许新的基因依赖性浮现出来。
当癌细胞为因突变或表达变化导致至关重要的基因丢失寻找补救措施时,这些新的基因依赖性数据可作为布罗德癌症依赖性图谱团队正在进行的利用CRISPR和RNA干扰(RNAi)等功能性基因组技术确定这些癌细胞中出现的脆弱位点的努力的有力补充。今年早些时候,该团队已宣布他们利用全基因组RNAi筛选列出了769个强大的基因依赖性,这是将近10年努力的成果。
该团队之前开发两种计算方法ATARiS和DEMETER,用于过滤501种CCLE管理的细胞系的功能性基因组筛选数据中的假阳性结果。这两种方法都会清除通常困扰着RNAi数据的所谓的种子效应(seed effects)。CERES则将这两种计算方法结合在一起。(生物谷 Bioon.com)
参考资料:
Robin M Meyers, Jordan G Bryan, James M McFarland et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nature Genetics, Published online 30 October 2017, doi:10.1038/ng.3984
中国农科院特产所首次破译鹿科动物全基因组序列
近日,由中国农业科学院特产研究所研究员李光玉带领创新团队在国际上首次破译鹿科动物全基因组序列。驯鹿全基因组测序的完成,不仅为研究人员从基因组水平挖掘驯鹿生长、代谢和抗寒等重要性状的分子机制提供了科学指导,而且为驯鹿驯化历史、基因组演化、群体遗传及鹿类动物的进化等理论研究奠定了重要基础。相关研究成果于11月1日在线发表在GigaScience上。
我国是鹿类动物资源最为丰富的国家,分布约有20种鹿类动物,而驯鹿是最具代表性的鹿科动物之一,是鹿科物种中唯一被驯化、雌雄个体均生长鹿角的动物。角的分枝繁复是其外观上的重要特征。长角分枝繁复,有时超过30叉,蹄子宽大,悬蹄发达,尾巴极短。驯鹿的身体上覆盖着轻盈但极为抗寒冷的毛皮。不同亚种、性别的毛色在不同的季节有显着不同,从雄性北美林地驯鹿在夏季时的深棕褐色,到格林兰岛上的白色。主要毛色有褐色、灰白色、花白色和白色。花色中白色一般出现在腹部、颈部和蹄子以上部位。鉴于该物种独特的生物学特征和重要的科研价值,研究人员对一只雌性驯鹿进行了全基因组测序并获得了高质量的组装序列,基因组大小为2.64Gb,Contig N50和Scaffold N50分别为89.7kb和0.94 Mb;基于同源比较和从头预测的方法,注释得到了21555个蛋白编码基因、159个rRNA、863个tRNA、547个miRNA和1339个snRNA。系统发育分析表明,驯鹿与牛科物种的分化时间大约在2950万年前,进一步的比较基因组学分析识别了335个驯鹿所特有的基因家族。
该项研究得到了中国农科院科技创新工程和国家自然科学基金等项目的资助,研究成果在线预发表期间即受到了广泛关注,并且荣获第十二届国际基因组大会GigaScience前沿研究奖。(生物谷Bioon.com)
Nat Commun:新方法使得CRISPR基因编辑准确性高达98%
2017年11月28日/基因宝jiyinbao.com/—在过去的五年里,CRISPR-Cas9技术因它的简单性和低成本,引发了基因编辑领域变革。但是,尽管这项技术能够可靠地发现和切割靶DNA序列片段,但是按照所希望的那样修复这种切割是一种碰运气过程。当目标就是校正DNA中导致遗传疾病的碱基变化时,高达50%的错误率是一个特别不容忽视的问题。
如今,在一项新的研究中,美国威斯康星大学麦迪逊分校生物医学工程教授Krishanu Saha领导的一个研究团队开发出一种能够让这种修复不那么容易地出错的新方法。相关研究结果于2017年11月23日在线发表在Nature Communications期刊上,论文标题为“Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing”。
与标准的CRISPR技术相比,这种新方法将按照所希望的那样精确地重写DNA序列的概率提高了10倍。这些研究人员利用一种被称作RNA适配子(RNA aptamer)的分子胶组装一种完整的CRISPR修复工具包并将这种工具包运送DNA切割位点上,从而实现这种更高的修复精准度。
Saha说,“这种工具包不仅提供了分子剪刀,而且还提供了细胞修复这种DNA切割所需的正确模板。鉴于这种RNA适配子比较牢固,而且非常稳定,我们所需的就是一下子将这种工具包运送到细胞中的合适位置上。”
与现有技术相比,新方法还有其他的几项优势。首先,这种工具包仅含有非病毒试剂,这就简化了生产过程,并降低了在未来开展遗传手术临床应用时存在的安全性问题。其次,将一种RNA适配子添加到这种工具包中要比修饰Cas9蛋白更加容易,而且提供更大的灵活性。
论文第一作者、Saha实验室的研究生Jared Carlson-Stevermer说,“我们能够将其他的生物分子添加到这种工具包中,就像是将一块额外的乐高积木放入一种已经存在的结构中。”
一个这样的例子是添加荧光标记,这允许研究人员很容易地在一个细胞群体中鉴定出所有经过精确编辑的DNA序列。Saha说,“通过寻找这些荧光标签,我们能够实现98%的准确率。”
在这项新的研究中,这些研究人员利用这种新方法以显著提高的保真度校正了源自一名庞贝氏症(Pompe disease)患者的干细胞系中的一种特定突变。庞贝氏症是由复杂的糖分子在器官和肌肉组织中堆积引起的一种罕见的遗传性疾病。
Saha说,“这类遗传手术并不缺乏候选的应用对象,这是因为有上万种疾病是由较小的序列差错造成的,而这种新方法能够修复这些错误。我们的下一个目标是在动物模型中测试这种方法,并且努力重写更长的DNA片段。”(生物谷 Bioon.com)
参考资料:
Jared Carlson-Stevermer et al. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nature Communications (2017), doi:10.1038/s41467-017-01875-9
我国科研团队率先完成菊花基因组测序
自然子刊:揭示基因组编辑新机制
中国科学院上海生命科学研究院(人口健康领域)中科院-马普学会计算生物学伙伴研究所杨力研究组与上海科技大学陈佳研究组、南京医科大学沈彬研究组合作研究揭示了胞嘧啶脱氨酶(APOBEC)在CRISPR/Cas9引发的DNA断裂修复过程中产生突变的新机制,为进一步提高基因组编辑保真度提供了新思路。
CRISPR/Cas9是迄今为止最为高效便捷的基因组编辑技术。虽然其在生命科学基础研究和生物技术开发等领域被广泛应用,并在临床研究中显示出了极大潜力,但由于编辑过程中存在的非靶向突变以及基因治疗的不可逆性,CRISPR/Cas9技术的精确性问题一直是科学界的焦点所在。由于APOBEC能够在DNA单链断裂修复过程中结合单链DNA并造成随机突变,而单链核酸(如单链寡聚核苷酸、基因组单链DNA)在CRISPR/Cas9引发的DNA修复过程中广泛存在。因此,评估APOBEC能否在CRISPR/Cas9引发的基因组DNA修复过程中产生突变,对于改进CRISPR/Cas9编辑技术的精确性以及DNA损伤修复等研究都具有重要意义。在该项研究中,研究人员证实了APOBEC能够作用于单链寡聚核苷酸的胞嘧啶位点,并通过CRISPR/Cas9引发的同源重组修复过程,在基因组DNA的同源胞嘧啶位点处产生碱基替换突变。同时,研究人员还发现APOBEC能够在由Cas9切刻酶引起的基因组DNA单链断裂修复过程中,激活碱基切除修复通路并产生DNA双链断裂,进而产生非靶向的随机碱基插入或缺失(insertions/deletions, indels)。基于上述机制研究,研究人员提出了利用双链寡聚核苷酸或双链质粒DNA作为修复模板,抑制内源APOBEC的策略来提高CRISPR/Cas9编辑保真度和精确性的方法。
杨力研究组长期从事计算生物学和组学研究。在此项合作研究中,研究人员利用计算和实验相结合的方法体系,阐明了APOBEC在CRISPR/Cas9引起的基因组DNA断裂修复过程中产生突变的分子机制,并据此成功与陈佳研究组合作开发出了增强型的基因组碱基编辑系统(Wang et al.,2017,Cell Research),实现了更高精度和更高效率的碱基编辑。
相关研究成果以APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks为题,在线发表于《自然—结构与分子生物学》。该研究得到了科技部、国家自然科学基金委、上海市科学技术委员会、上海科技大学大科研启动基金的资助。(生物谷Bioon.com)
基因“剪刀” 如何撬动几十亿美元大市场?
小编推荐会议:2018基因编辑与基因治疗国际研讨会
2017年十大科学突破中,“精准定位的基因编辑”榜上有名,研究人员修改了基因编辑工具,做到“精确到点”的修改,这使得基因“剪刀”在未来可能撬动更大的市场。
科技日报记者 张佳星
软软的、十几纳米大小,核酸酶的“微观照”更像一大团“棉花糖”。百科上这样介绍它:它的发现和采用,使基因的“编辑”,包括插入、删失、融合等操作成为可能。它内部是“分区”的,有的区管“定位”、有的区管“切割”……
正是这把“棉花糖”样的“剪刀”就要“利刃出鞘”——美国某著名咨询公司近日发布报告称,全球基因组编辑(包括CRISPR、TALEN和ZFN)的市场规模将从2017年的31.9亿美元增长到2022年的62.8亿美元,复合年均增长率为14.5%。
产业市场的“全面开花”还只是一部分,“点”的突破仍在基因编辑行业不断产生。美国《科学》杂志近日公布的2017年十大科学突破中,“精准定位的基因编辑”榜上有名,研究人员修改了基因编辑工具,做到“精确到点”的修改,这使得基因“剪刀”在未来可能撬动更大的市场。
三种手段,各有千秋
“蘑菇有个释放孢子的‘习惯’,之后摘下来的蘑菇就要变黑,拿到市场上也不好卖。”清华大学合成与系统生物学研究中心研究员谢震深入浅出,怎么让它不黑,通过敲除诱发这个“习惯”的基因,“生物活动被阻断了,就不会变黑了,进而延长货架期。”
对自然界一些“拙作”进行“美化”,是人们希望通过基因编辑做到的。
现有的3种基因编辑技术ZFN、TALEN、CRISPR,又是怎么做到编辑基因,改变生物活动的呢?“ZFN、TALEN技术可以视为一类,它们是通过外源的蛋白质,进入细胞后找到DNA序列的。”谢震说,“CRISPR技术的‘核心功能组件’则不同,有一部分是RNA序列,另一部分是蛋白质。”
要完成编辑工作,它们的架构和功能都很相似,3种技术中依赖的“核心组件”,都必须拥有“定位”功能和“剪切”功能:ZFN技术中的蛋白叫锌指核酸酶,由于三维结构像人的手指,中间有锌离子而得名;TALEN技术中的蛋白叫转录激活样效应因子核酸酶。
两个核酸酶都有分区,即可特异性识别序列的DNA结合域和进行非特异性切割的DNA切割域。
在CRISPR技术中,识别特异性DNA序列的工作由“向导RNA”配合完成,而不是由蛋白质单独完成,切割DNA的工作仍由蛋白质完成。
“酶的不同,使得技术的复杂程度和应用范围也不相同,”谢震说,例如“一拖多”的基因编辑工作,即能够一次同时编辑多个基因的任务,CRISPR最容易做到,TALEN困难一些,ZFN却很困难。
构造3种编辑工具的工作非常繁琐,尽管CRISPR相对简单,但是很多研究团队还是希望这种工具“拿来就用”。
为此,专门有研究团队将酶的部件转变成“模块”,按需“组装”就能获得识别特定DNA序列的编辑工具。例如,通过研究者长期的努力,识别每一种三联碱基的64种锌指组合中已有大部分被发现并编撰成目录,这些相关数据也都能够在公共的数据库或者文献中被检索到。
也就是说,针对要编辑的不同基因,这3种方法都必须进行“定制”才能“服务”,而随着基因编辑技术的研究不断深入,公共技术平台将积累起越来越多的共性研究,“定制化”将变得越来越简单。应用门槛的降低,势必会带来市场规模的进一步扩大。
轻松导航,占据市场最大份额
尽管“定制服务”简易化是趋势,但是定制CRISPR的简便是与生俱来的,因为它由RNA做“向导”,与DNA的“亲近”程度比蛋白质更近一步。
一篇《基因编辑,别忘了还有ZFN和TALEN》的文章去年7月发表在生物技术专业网站生物通上,一个“还”字,让CRISPR这种基因编辑技术的火爆不言自明。CRISPR设计操作简便的优势,让其出现最晚,却应用最广。
“向导RNA的合成非常容易,只要确定序列,按照序列互补性原则合成就可以。”谢震说,“但是蛋白质与DNA的作用,不存在‘互补’这样明确的关系,要合成用于向导的蛋白质区域,需要一整套流程,包括预测、验证等。”
谢震解释,这方面TALEN相对容易一些,根据已有的TALEN蛋白结合DNA的特性,可以帮助设计出与特定DNA序列结合的蛋白,ZFN是“定制服务”中最复杂的。
正因为CRISPR灵活的“转场”能力,它在各个领域的基因编辑中获得了广泛应用。分析报告中指出,CRISPR有望占据全球市场的最大份额。
这也致使ZFN技术的拥有者Sangamo生物技术公司老总“酸葡萄”般地表示,CRISPR尽管效率高,但在“精确度”上不及ZFN,不能用于医学领域。2017年,该公司组织实施了第一例人体基因改造治疗的临床试验,向血液内注入基因编辑工具ZFN,以期治疗亨特氏综合征。
事实上,CRISPR技术也已开始在医学诊断和治疗方面开展临床试验。2016年,我国四川大学华西医院就用CRISPR技术删除了肺癌患者免疫细胞中的PD-1蛋白基因,再将基因编辑后的免疫细胞重新注入患者血液中,期望治疗癌症。
“可以通过对蛋白质性质的微调,提高核酸酶的识别能力。”谢震表示,很多提高CRISPR精确度的研究工作正在进行,2016年,谢震团队就在《自然》子刊上发表论文称,他们通过在哺乳动物细胞中合理拆分Cas9蛋白,利用多输入合成基因线路感知不同分子信号,实现了在不同类型细胞中对Cas9/dCas9活性的精确调控,为精确控制CRISPR/Cas9基因编辑工具提供了新的策略。
技术进步,精确度再刷新
“之前是剪刀将双链剪断后,仰仗细胞的自我修复能力以及修补的DNA模板修补基因。现在不剪断,直接让碱基变身。”《科学》杂志2017十大突破中的碱基编辑器,是哈佛大学团队对CRISPR技术的改进,通过核心组件——“酶”的变化实现了编辑功能上的进步。谢震解释称:“原来的Cas9酶的活性丧失了,结合上没有‘剪刀’能力,但与其他蛋白融合能变成使单个碱基突变的酶。”
“最开始他们在自然界找到了这种能定向突变C-T碱基的酶,后来他们自己造了另一种能够定向突变A-G碱基的酶。”谢震说,“目前要解决的是准确性问题,如果在特定区域存在多个重复的碱基,要突变哪一个是需要确定的事。例如把目标位点5个碱基以内的A全部突变掉,需要精确到单个碱基。”
据报道,基因组编辑技术主要应用在细胞系改造、遗传工程、诊断和治疗等方面。目前细胞系改造占最大份额,基因编辑干细胞疗法的研究认知度高。“基因编辑更像一种底层技术,是实现功能或者产品的渠道和方法,期待它的产品能够早日落地。”谢震说。
相关链接
三大基因编辑技术
基因编辑是指对基因组进行定点修饰的一项新技术。利用该技术,可以精确定位到基因组的某一位点上,在该位点剪断靶标DNA片段并插入新的基因片段。目前主要三大基因编辑技术:人工核酸酶介导的锌指核酸酶技术(ZFN);转录激活因子样效应物核酸酶技术(TALEN);RNA引导的CRISPR-Cas核酸酶技术。
ZFN技术分两步完成,对DNA进行特异性切割,形成DNA双链断裂区;通过破坏非同源末端链接使目的基因失活,或借助同源重组等方式完成DNA的修复连接,可以使断裂的DNA双链重新黏合。
TALEN技术的原理并不复杂,即通过 DNA识别模块将TALEN元件靶向特异性的DNA位点并结合,在同一个蛋白上有序地实现引导进入细胞核、靶位点DNA的特异性识别和靶位点DNA的切割这三个不同的功能。
CRISPR-Cas技术使用一段序列特异性向导RNA分子(crRNA)引导核酸内切酶到靶点处,从而完成基因组的编辑,其编辑基因一般分两步进行——crRNA的合成及在crRNA引导下的RNA结合与剪切。(生物谷Bioon.com)