基因时代
就找基因君

eLife:科学家鉴别出与自闭症发病相关的基因突变

基因君

2019年2月20日 讯 /生物谷BIOON/ –近日,一项刊登在国际杂志eLife上的研究报告中,来自加拿大多伦多大学病童医院等机构的科学家们通过研究深入阐明了神经细胞突变对人类自闭症相关特性的影响。如今自闭症谱系障碍和自闭症患者常常会对一种特殊疗法产生反应,即用诱导多能干细胞(ipsCs)衍生的神经元细胞来治疗患者,诱导多能干细胞能产生人体所需要的任何一种类型的细胞,但较高的成本意味着在单一的从测试中仅会有少数的诱导多能干细胞被使用,这就明显限制了自闭症的研究,因此目前研究人员继续在自闭症研究领域取得新的突破。

eLife:科学家鉴别出与自闭症发病相关的基因突变

图片来源:CC0 Public Domain

这项研究中,研究人员通过研究建立了一种可伸缩的iPSCs衍生神经元模型来改善自闭症领域的研究,研究者开发出了一种新型的资源库,该资源库中包含来自25名自闭症个体衍生的53种不同的iPSC细胞系,这些自闭症个体携带广泛的罕见遗传性突变。利用CRISPR基因编辑技术,研究人员开发出了四对等基因的ipsC细胞系(相同或类似遗传组成),这些细胞系携带或不携带遗传突变,他们想通过研究阐明突变对个体机体自闭症特性的影响。

研究者Eric Deneault博士说道,我们利用大规模的多电极阵列神经元记录和更传统的膜片钳记录来调查ipsC细胞系的突触特性和电生理特性,研究结果揭示了遗传突变和神经元细胞特性之间的诸多有趣的关联。最让研究人员不可思议的研究发现是,缺失CNTN5或EHMT2基因的神经元会出现一致的自发性神经网络过度活跃,其会诱发人群出现自闭症特点,这种极度活跃神经网络的发现与当前研究人员对自闭症的观点一致,这就为后期深入研究自闭症的发病机制提供了新的思路和希望。

研究者Stephen Scherer指出,这项研究中我们开发出了ipsC衍生的神经元生物样本库以及相应的基因组数据来帮助加速自闭症领域的研究;我们希望本文研究结果未来有望帮助开发出治疗自闭症患者的新型潜在疗法。(生物谷Bioon.com)

原始出处:

Eric Deneault, Muhammad Faheem, Sean H White, et al. CNTN5-/+or EHMT2-/+human ipsC-derived neurons from individuals with autism develop hyperactive neuronal networks, eLife (2019). DOI:10.7554/eLife.40092

Science:中科院高彩霞课题组发现胞嘧啶碱基编辑器引发意想不到的全基因组脱靶突变

基因君


2019年3月2日讯/生物谷BIOON/—在一项新的研究中,中国科学院的高彩霞(Caixia Gao)课题组通过对作为一种重要的作物物种的水稻进行全基因组测序对胞嘧啶碱基编辑器(BE3和HF1-BE3)和腺嘌呤碱基编辑器(ABE)产生的脱靶突变进行全面调查。他们发现胞嘧啶碱基编辑器(BE3和HF1-BE3)诱导全基因组脱靶突变。相关研究结果于2019年2月28日在线发表在Science期刊上,论文标题为“Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice”。

Science:中科院高彩霞课题组发现胞嘧啶碱基编辑器引发意想不到的全基因组脱靶突变
图片来自Institute of Genetics and Developmental Biology, Chinese Academy of Sciences。

单核苷酸变化是人类疾病和经济生物中性状变异的重要原因。通过碱基编辑器对单核苷酸多态性进行基因改造为基因疗法带来了巨大希望,这可能潜在地治愈人类疾病并改善作物植物的性状。

科学家们已开发出胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)。这些碱基编辑器是将切口酶型Cas9蛋白与胞嘧啶脱氨酶或腺嘌呤脱氨酶融合在一起形成的,并且经发现它们在单向导RNA(sgRNA)的靶位点中促进C>T或A>G转化(即在靶转化)。

尽管CBE和ABE的在靶转化(on-target conversion)在许多有机体中发现,但是它们的脱靶效应并未在全基因组水平上进行过系统性评估。

过去对碱基编辑特异性的分析主要局限于使用计算机软件预测的类似靶标的位点。这些类似靶标的位点通常数量少并且具有有限的基因组分布。

考虑到科学家们已发现大肠杆菌、酵母细胞和人类细胞中的胞嘧啶脱氨酶异位表达会引发全基因组脱氨事件,在全基因组水平上以无偏见的方式探究碱基编辑器的特异性已变得必要和迫切。

在这项新的研究中,高彩霞课题组选择了三种广泛使用的碱基编辑器:BE3、高保真BE3(HF1-BE3)和ABE,其中BE3和HF1-BE3属于胞嘧啶碱基编辑器(CBE)。将靶向11个基因组位点的总共14个碱基编辑器构造体通过农杆菌转化方法转化到水稻中。他们利用全基因组测序对由BE3、HF1-BE3或ABE编辑的再生T0水稻植物;经过这些碱基编辑器转化但没有经过sgRNA转化的水稻植物以及两个对照组水稻植物(即野生型水稻和转基因水稻的无效分离株)进行分析。

这些碱基编辑器组(即BE3组、HF1-BE3组和ABE组)和对照组在发现的插入或删除(insertion or deletion, indel)数量上没有显著差异。相反之下,BE3组和HF1-BE3组要比ABE组和对照组具有显著更多的单核苷酸变异(SNV)。

在这些碱基编辑器组和对照组中,每株水稻植物的C>T单核苷酸变异(SNV)的平均数量为:203(BE3)、347(HF1-BE3)、88(ABE)和105(对照组)。因此,BE3组和HF1-BE3组水稻植物中的C>T单核苷酸变异数量分别比对照组水稻植物高94.5%和231.9%。

值得注意的是,在没有sgRNA的情况下用BE3和HF1-BE3处理水稻植物也会导致大量的C>T单核苷酸变异。此外,由BE3和HF1-BE3赋予的绝大多数额外C>T突变与使用计算机软件(Cas-OFFinder)预测的脱靶位点并不相匹配。

高彩霞课题组发现所有的单核苷酸变异以及C>T单核苷酸变异分布在整个水稻基因组中,这表明在全基因组发生。利用转录组数据构建的图谱表明与转录的基因区域相比,与BE3和HF1-BE3相关的较高数量的C>T单核苷酸变异更频繁地发生,在这些基因区域,单链DNA因活跃的转录而得以产生。

总而言之,由高彩霞课题组产生的数据表明是BE3和HF1-BE3,而并不是ABE,在水稻中诱导全基因组脱靶突变。这些脱靶突变主要是C>T单核苷酸变异,在转录的基因区域中富集,通过当前的计算机方法是无法预测的。含有胞嘧啶脱氨酶的碱基转化单元可能是由BE3和HF1-BE3引发的较高数量的脱靶单核苷酸变异的原因,因而需要加以优化以提高胞嘧啶碱基编辑器(BE3和HF1-BE3)的特异性。

高彩霞博士说,“碱基编辑器代表了一种吸引人的工具,用于产生植物育种所需的精确遗传变异。这些碱基编辑器的特异性至关重要,这是因为脱靶突变可能是有害的。我们发现当前的BE3或HF1-BE3在植物中导致意外的和不可预测的全基因组脱靶突变,从而凸显了优化这类碱基编辑器特异性的紧迫性。”(生物谷 Bioon.com)

参考资料:


Shuai Jin et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019, doi:10.1126/science.aaw7166.

治疗帕金森病 基因疗法收获积极早期成果

基因君

 

治疗帕金森病 基因疗法收获积极早期成果

3月12日,Axovant公司宣布其在研基因疗法在一项治疗帕金森病的2期临床试验中取得了积极的早期数据。该疗法的安全性与耐受性得到了验证,且改善了患者的运动能力评分。

帕金森病是最常见的神经退行性疾病之一,患者大脑中的特定神经元会逐渐死亡,导致多巴胺产量不足,从而影响患者的运动能力,使其肌肉出现僵硬和震颤。目前,左旋多巴是治疗帕金森病最有效的药物之一,但长期使用这款药物,会导致患者出现运动能力的波动。这种波动分为两个阶段:在“ON”期,患者的运动能力能保持正常水平。而在“OFF”期,他们的运动能力会出现明显下降,甚至难以行走。据估计,美国大约有40%的患者会经历“OFF”期。因此,这些患者需要全新的治疗方案,对他们的病情进行控制。

本次研究中,一项名为“AXO-Lenti-PD”的基因疗法让患者们看到了希望。使用慢病毒载体,这款基因疗法能将一系列关键的酶递送进患者体内,辅助生成多巴胺。理论上说,它有望重塑大脑中的多巴胺水平,从而缓解病情。研究人员们期望通过简单的一次治疗,它就可以为患者带来多年的治疗效果。

在一项名为SUNRISE-PD的2期临床试验中,研究人员们评估了这款基因疗法的治疗潜力,并分析了最早接受治疗的2名晚期帕金森病患者在治疗后3个月的数据。在疗效方面,研究人员们使用的是“统一帕金森病评定量表”(UPDRS)第三部分的评分,它常被医生用来评估运动能力。分析表明,在去除其他疗法(如左旋多巴)的影响时,处于“OFF”期的患者,其运动能力都得到了改善。相较基线,他们的改善幅度平均达42%。在其他的一些指标上,研究人员们也观察到了可喜的效果。

Axovant的新闻稿指出,这些结果表明相较之前公布的最高剂量的试验结果(注:ProSavin试验),最低剂量的AXO-Lenti-PD基因疗法在3个月时可能有更好的治疗效果。基于这些积极的数据,研究人员们计划继续推进该基因疗法的研究,并有望在今年第二季度正式开展。

“这些早期的数据表明AXO-Lenti-PD有潜力为晚期帕金森病患者带来显着的运动能力改善。AXO-Lenti-PD的作用机制是将内源多巴胺生物合成所需的所有3个酶递送进体内。之前ProSavin的试验告诉我们,这有望改善‘OFF’的症状。而我们取得的结果也的确非常令人振奋,”本研究的负责人之一Roger Barker博士说道:“我期待这一项目能转化为帕金森病的创新疗法。”(生物谷Bioon.com)

 

首个野生大豆高质量参考基因组被解析

基因君

 

首个野生大豆高质量参考基因组被解析

近日,香港中文大学林汉明教授团队及华大基因等多家国内外机构合作完成了全球首个野生大豆高质量参考基因组解析,该成果为挖掘野生大豆遗传资源和改良、优化栽培大豆品种提供了重要工具。相关研究成果近日在线发表于《自然-通讯》。

基因组信息是当前作物改良计划的重要基础。过往大豆基因组研究主要依赖美国科学家完成的栽培大豆Williams 82 的参照基因组进行,未能深入研究野生大豆独有的基因信息。虽然有野生大豆的基因组测序报告,但组装成的基因组包括大量碎片段,具有可读的基因序列连续性低,未有高质量、可作为野生大豆参考基因组的产生。

“大豆的基因组含大量的重复区,组装时困难重重,我们整合了几种最新测序方法产生的大量数据,才最终把问题解决。”林汉明告诉《中国科学报》。

他带领的团队在2010年率先完成了31个野生大豆和栽培大豆的测序,说明野生大豆的生物多样性和基因组研究对了解大豆的重要性;随后在2014年首次成功利用基因测序方法,获得野生大豆耐盐基因并成功应用产生新大豆耐逆品种,提供了改良大豆的新策略。在此次研究中,团队针对野生大豆W05,应用三代PacBio测序技术、Bionano Genomics双酶切光学图谱(OM)和高通量染色体构象捕获技术(Hi-C)产出的数据,组装得到染色体级别的参考基因组。

“野生大豆基因组组合在比较基因组和进化研究中可以帮助寻找重要基因,最终实现改良栽培大豆性状,帮助研发高产、优质、耐逆大豆。希望我们的研究发现能够对其他科研团队挖掘大豆的重要基因信息提供较好的参考价值。”林汉明说。(生物谷Bioon.com)

 

科学家呼吁支持基因编辑育种技术保证粮食安全

基因君

科学家呼吁支持基因编辑育种技术保证粮食安全

 

一个国际研究团队日前在美国《科学》杂志上发表文章说,基因编辑等新植物育种技术能为全球粮食安全做出重大贡献,是全球消除饥饿和贫困战役的强大补充力量,国际社会应为负责任地利用这些新技术建立监管框架和支持机制。

就职于比利时、巴基斯坦、德国、沙特和菲律宾高校或科研机构的7名科学家联合发表文章称,基因编辑技术的最新发展已使通过改变植物内源基因对作物进行改良成为现实。例如基因诱变育种技术就是在不插入外来DNA(脱氧核糖核酸)的情况下修改作物的基因组。

目前,基因编辑技术在水稻、小麦和玉米等主要谷物及其他涉及粮食安全的作物中的应用迅速增加。这种技术还可用于改良孤生作物(通常因在全球市场缺乏经济价值而被忽略的作物),如一些地区独有的水果、蔬菜和一些主食作物。

文章说,由于基因编辑技术不涉及跨物种的基因转移,所以相比转基因技术遭受到的阻力会小一些。未来5年内,多个涉及粮食安全的作物可以迅速受益于该技术,以解决这些作物长期以来面临的主要病虫害问题,减少对化学杀虫剂的使用需求,以及使植物更能适应极端气候的压力。

然而在欧洲,对基因编辑育种技术的监管仍存在争议。2018年,欧洲法院裁定包括CRISPR基因编辑在内的基因诱变技术应被视为转基因技术,这意味着这种技术在欧洲将接受与转基因技术一样的监管。对此许多育种专家表示感到“震惊”和“悲哀”,认为这一裁定将阻碍在欧盟植物生物技术领域的科研投入。

文章作者之一,来自德国哥廷根大学的农业经济学家马丁·凯姆就表示,基因编辑作物并不含外来基因,因此这些作物与传统育种技术培育的作物一样安全,不应该被视为转基因作物进行监管。

文章指出,要实现全球粮食安全,需要一个完整的体系,需要从过去的经验中吸取教训,那就是创新至关重要,而一个能支持创新的环境同样至关重要。国际社会应该抓住机遇,为应用基因编辑技术制定出建设性的监管和支持体系。(生物谷Bioon.com)

 

诺华基因疗法3期结果积极 有望5月获批上市

基因君

 

诺华基因疗法3期结果积极 有望5月获批上市

日前,诺华旗下的AveXis公司宣布,治疗1型脊髓性肌萎缩症(SMA)的基因疗法Zolgensma,在名为STR1VE的3期临床试验中,获得积极中期结果。Zolgensma能够延长婴儿的无事件生存期(event-free survival),提高运动能力评分,并且让他们达到在未接受治疗情况下无法达到的发育里程碑。这款疗法如果获批,将成为FDA批准的第二款体内给药的基因疗法。

SMA是一种严重神经肌肉疾病,患者由于运动神经元死亡而导致进行性肌无力和瘫痪。SMA是由于编码运动神经元生存蛋白(SMN)的SMN1基因出现缺陷而导致的。SMA是导致婴儿死亡的首要遗传因素之一。而最严重的1型SMA患者,通常由于迅速肌肉萎缩,超过90%的患者在出生后24个月内死亡或者需要永久性的呼吸支持。

Zolgensma是一种基于AAV9病毒载体的基因疗法,它将正常表达SMN蛋白的转基因通过AAV9病毒载体导入患者体内。它已经获得FDA授予的突破性疗法认定和优先审评资格,预计在今年5月收到FDA的回复。

在这项开放标签,单臂,单剂量,多中心临床试验中,年龄小于6个月的1型SMA患者接受了Zolgensma的治疗。试验结果表明,截止到2018年9月27日,在22名接受治疗的患者中21名仍然活着并且未出现不良事件。他们的中位年龄为9.5个月。根据1型SMA患者的自然历史,大约50%的婴儿在10.5个月时会死去或者需要永久呼吸协助。

检测患者运动能力的CHOP-INTEND评分在接受基因疗法后一个月平均提高7点,在接受治疗3个月后平均提高11.8点。这表现出患者的运动能力与基线相比得到提高,而这一指标与患者能否达到预期的发育里程碑紧密相关。

接受治疗的部分患者达到一系列运动能力的里程碑,其中包括维持头部正直超过3秒,翻身,不接受协助坐起来超过30秒等等。随着时间的推移,达到里程碑的患者比例升高。

这项试验第一次对Zolgensma在人体中的生物分布进行了分析。研究表明, Zolgensma成功转染了中枢神经系统组织,包括大脑和脊髓中的运动神经元。同时,接受Zolgensma治疗的患者脊髓组织中运动神经元数目很多,并且保持着正常的大小和形状。与之相比,未接受治疗的1型SMA患者组织中运动神经元稀少。这些数据支持Zolgensma在临床前小鼠和非人灵长类动物模型中显示的作用机制。

“STR1VE试验的数据进一步支持我们在先前关键性1期试验START中观察到的结果,包括Zolgensma能够延长生存期并且帮助达到运动里程碑,”AveXis公司的首席医学官Olga Santiago博士说:“这些数据为支持Zolgensma治疗1型SMA积累了更多证据。”(生物谷Bioon.com)

 

Science子刊:我国科学家开发出一种可远程控制的基因编辑平台

基因君


2019年4月26日讯/生物谷BIOON/—在一项新的研究中,来自中国南京大学、南京工业大学和厦门大学的研究人员开发出利用病毒将CRISPR-Cas9基因编辑工具运送到特定细胞中的一种替代方法,它涉及使用两种类型的光。相关研究结果发表在2019年4月3日的Science Advances期刊上,论文标题为“Near-infrared upconversion–activated CRISPR-Cas9 system: A remote-controlled gene editing platform”。在这篇论文中,他们描述了他们的新型载体以及它在试验用小鼠中的效果。论文通讯作者为南京大学的宋玉君(Yujun Song)教授、南京工业大学的王玉珍(Yuzhen Wang)副研究员和厦门大学的林友辉(Youhui Lin)副教授。

Science子刊:我国科学家开发出一种可远程控制的基因编辑平台
图片来自Science Advances (2019). DOI: 10.1126/sciadv.aav7199。

CRISPR-Cas9基因编辑工具是治疗遗传疾病的一场即将到来的革命,科学家们继续在各种应用中测试它的能力。鉴于当前的方法使用病毒将这种基因编辑工具递送到特定细胞中,一个研究领域涉及寻找它的替代载体系统。人们较早地就已知道这种病毒递送方法不可行,这是因为免疫系统可能会做出反应,或者更糟的是,这存在着触发肿瘤产生的风险。在这项新的研究中,中国研究人员提出了一种全新的方法:利用两种光来递送这种基因编辑工具。

他们的载体系统由对低能近红外辐射(NIR)敏感并发出紫外光的上转换纳米颗粒(upconversion nanoparticle, UCNP)组成。当近红外光照射在这些上转换纳米颗粒上时,这种光被吸收并转换成紫外光,所产生的紫外光会发射出去。

在细胞内部,这种载体系统可通过给皮肤照射近红外光加以激活。照射的近红外光穿过皮肤进入体内,并前去寻找这种载体系统。当近红外光被上转换纳米颗粒转化为紫外光时,它切割这种载体系统中的分子,从而释放出这种基因编辑工具来完成它的作用。

在实际的实验中,这些研究人员通过注射将CRISPR-Cas9工具直接递送至小鼠内部的癌性肿瘤中。当它安全就位时,他们将近红外光照射到位于肿瘤(和基因编辑工具)所在部位上方的皮肤上。当所产生的紫外光释放出这种基因编辑工具时,它开始编辑一种允许肿瘤生长的蛋白,最终结果就是肿瘤尺寸减小。

这些研究人员表示,他们的研究不仅表明一种基于光的载体能够与CRISPR-Cas9基因编辑一起发挥作用,而且还表明它能够安全地发挥作用并且提供直接的益处。(生物谷 Bioon.com)

参考资料:


Yongchun Pan et al. Near-infrared upconversion–activated CRISPR-Cas9 system: A remote-controlled gene editing platform, Science Advances (2019). DOI: 10.1126/sciadv.aav7199.

Nature:操纵肿瘤抑制基因RB有望治疗肺癌

基因君


2019年5月13日讯/生物谷BIOON/—RB(retinoblastoma)肿瘤抑制通路中的突变是癌症的一个标志,也是肺腺癌的一个普遍特征。尽管RB是第一个被鉴定出的肿瘤抑制基因,但是人们仍不清楚RB在癌症中的持续性丢失的分子和细胞基础。利用细胞周期蛋白依赖性激酶CDK4和CDK6的抑制剂重新激活RB通路的方法在一些癌症类型中是有效的,而且人们当前目前正在评估它们治疗肺腺癌的疗效。RB通路重新激活是否具有治疗效果以及靶向CDK4和CDK6是否足以重新激活肺癌中的RB通路活性仍然是未知的。

在一项新的研究中,来自美国宾夕法尼亚大学的研究人员在已建立的致瘤KRAS驱动的小鼠肺腺癌进展和通路重新激活过程中模拟了RB丢失。相关研究结果于2019年5月1日在线发表在Nature期刊上,论文标题为“RB constrains lineage fidelity and multiple stages of tumour progression and metastasis”。

Nature:操纵肿瘤抑制基因RB有望治疗肺癌
图片来自Nature, 2019, doi:10.1038/s41586-019-1172-9。

这些研究人员发现RB丢失能够让癌细胞在肿瘤进展期间绕过两个不同的屏障。首先,RB丢失消除了在恶性进展期间对MAPK信号扩增的要求。他们鉴定RB的CDK2依赖性磷酸化作为MAPK信号转导的一种效应物,并且也作为对CDK4和CDK6的抑制产生抵抗性的关键调节物。其次,RB失活让细胞状态决定因子的表达失去调节,从而促进谱系失真(lineage infidelity)并加快了转移能力的获得。

相比之下,RB重新激活让晚期肿瘤经重编程后转向转移能力较弱的细胞状态,但是由于MAPK通路信号转导的适应性重新连接而不能够阻止癌细胞增殖和肿瘤生长,因此这会导致RB的CDK依赖性抑制。

综上所述,这项新的研究证实了可逆基因扰动方法的力量,有助于确定肿瘤进展的分子机制、基因、它们控制的肿瘤抑制程序之间的因果关系,以及成功的癌症疗法的关键决定因素。(生物谷 Bioon.com)

参考资料:


David M. Walter et al. RB constrains lineage fidelity and multiple stages of tumour progression and metastasis. Nature, 2019, doi:10.1038/s41586-019-1172-9.

基因编辑最新研究进展一览

基因君

2019年5月26日 讯 /基因宝jiyinbao.com/ –本期为大家带来的是基因编辑领域的最新研究进展,希望读者朋友们能够喜欢。

1. Science子刊:一种新型腺嘌呤碱基编辑器可让细胞RNA编辑最小化

DOI: 10.1126/sciadv.aax5717.

基因编辑最新研究进展一览

在一项新的研究中,来自美国布罗德研究所和哈佛大学的研究人员发现有证据表明使用碱基编辑器会导致细胞中出现意想不到的RNA编辑。相关研究结果发表在2019年5月8日的Science Advances期刊上,论文标题为“Analysis and minimization of cellular RNA editing by DNA adenine base editors”。在这篇论文中,他们描述了他们对CRISPR类型腺嘌呤碱基编辑器(ABE)的研究,以及他们取得的发现。

ABE将一个DNA碱基对转换成另一个DNA碱基对,从而允许修复某些细胞类型中的突变,而不会产生不想要的编辑效应。据认为,ABE还有潜力校正几乎一半已知的导致医学疾病的遗传异常。ABE的科学基础对医学界来说变得越来越重要。不幸的是,最近的一些研究已发现,ABE可能也会导致意料之外的编辑。在今年3月,一个研究团队发现胞嘧啶碱基编辑器3型(CBE3)以高于正常的速率诱导单核苷酸变异。在上个月,另一个研究团队发现胞嘧啶碱基编辑器(CBE)和ABE导致RNA中的脱靶编辑。在这项新的研究中,这些研究人员试图在使用ABE时进一步测试脱靶编辑,并在确认后找到一种解决方案。

这些研究人员以一种包括人细胞系中所有细胞RNA转录本的方式分析了ABE的最新版本,称为ABEmax,而且他们使用比其他人使用的更灵敏的工具来做到这一点。他们报道他们确实在RNA样本中发现了低水平的脱靶编辑。为了解决这个问题,他们开发了在保留在靶碱基编辑的能力同时导致较少RNA编辑的新型ABE变体(基于灭活的野生型大肠杆菌)。他们进一步报道说,这些新型变体是以一种让RNA和DNA编辑过程解耦合的方式构建出来的,这样就能够最大限度地减少DNA和RNA中的脱靶编辑。

这些研究人员得出结论:由于较低的RNA编辑且较短的RNA半衰期,对未来研究的干扰程度可能取决于它们的具体应用。他们建议寻求让RNA编辑最小化的科学家们使用他们构建出的一种新变体—他们称之为ABEmaxQW。

2. Cell:首次发现阻断CRISPR-Cas9基因组编辑的小分子抑制剂

doi:10.1016/j.cell.2019.04.009.

基因编辑最新研究进展一览
在一项新的研究中,来自美国布罗德研究所等研究机构的研究人员发现酿脓链球菌Cas9(SpCas9)的首批小分子抑制剂能够更精确地控制基于CRISPR-Cas9的基因组编辑。具体而言,他们通过开发一系列高通量生物化学分析方法和基于细胞的分析方法,筛选了许多小分子,以便鉴定出能够破坏SpCas9与DNA结合因而干扰它的DNA切割能力的化合物。这些首批小分子CRISPR-Cas9抑制剂很容易进入细胞,并且比之前发现的抗CRISPR蛋白小得多。这些新化合物可以对基于SpCas9的编辑技术进行可逆的和剂量依赖性的控制,包括它们在哺乳动物细胞中进行基因编辑、碱基编辑和表观遗传编辑的应用。相关研究结果发表在2019年5月2日的Cell期刊上,论文标题为“A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9”。
论文通讯作者、布罗德研究所的Amit Choudhary说道,“这些技术为快速鉴定和使用针对SpCas9和下一代CRISPR相关核酸酶的小分子抑制剂奠定了基础。靶向CRISPR相关核酸酶的小分子抑制剂具有广泛应用于基础研究、生物医学和国防研究以及生物技术应用的潜力。”

当前,SpCas9正在开发作为多种疾病(包括艾滋病、视力障碍、肌肉萎缩症和其他遗传性疾病)的基因治疗试剂。但是,这些治疗应用将极大地受益于对SpCas9活性的剂量和时间安排进行精确控制以减少脱靶效应。控制SpCas9活性的这些方面也可能使其他应用受益,比如对模型生物的DNA进行高效编辑来构建疾病模型和研究疾病,以及在基因工程蚊子中使用基因驱动来遏制疟疾和其他蚊子传播疾病。

对SpCas9的剂量和时间控制的需求已产生了对抗CRISPR分子的需求。尽管存在靶向SpCas9的抗CRISPR蛋白,但是它们是大分子,不易渗透到细胞中,起着不可逆的作用,可被蛋白酶分解,并且可能在体内存在引起不良免疫反应的风险。相反,小分子抑制剂在蛋白水解上是稳定的,可逆的,通常是非免疫原性的,并且能够通过被动扩散轻松地递送到细胞中。此外,它们可以低成本地大规模合成,具有很小的批间差异。

在这项新的研究中,Choudhary及其团队推出了一个强大,灵敏且可扩展的平台,用于快速、经济地鉴定和验证SpCas9的小分子抑制剂。鉴于SpCas9酶的特性,以高通量方式测量CRISPR-Cas9活性从而进行药物筛选一直是具有挑战性的。为此,Choudhary团队分别开发了针对SpCas9-DNA结合和SpCas9 DNA切割活性的高通量初级和二级测定方法。对于初级测定,他们使用一种称为荧光偏振的生物化学技术来监测SpCas9与含有PAM序列的经过荧光团标记的DNA片段之间的相互作用。在二级测定中,他们使用自动显微镜来测量在细胞中由SpCas9介导的对报告基因进行DNA切割后产生的荧光变化。

通过使用这些测定方法,这些研究人员首先筛选了多种类型小分子的代表成员,以确定其成员经常抑制SpCas9的小分子类型。他们鉴定出两种先导化合物,它们以剂量依赖性方式破坏了哺乳动物细胞中SpCas9结合DNA和抑制SpCas9介导的DNA切割的能力。鉴于这些小分子阻断这种酶结合DNA,因此它们还抑制SpCas9的催化活性受到破坏的编辑技术,包括用于转录激活的那些技术,而且在人血浆中是稳定的。

Choudhary说,“这些结果为对CRISPR-Cas9活性的精确化学控制奠定了基础,从而能够安全地使用这些技术。然而,这些分子还没有为人类应用做好准备,也没有在生物体内进行功效测试。”

在未来的研究中,这些研究人员计划鉴定这些抑制剂在SpCas9:gRNA复合物上的结合位点,研究它们的作用机制,并优化它们的功效。他们还将确定这些分子是否与哺乳动物细胞中的其他靶标相互作用,并评估它们对其他的CRISPR相关核酸酶的特异性。这项新研究的早期结果表明这些分子对它们的靶标极具特异性,这是因为它们对与SpCas9的亲缘关系较远的CRISPR相关酶Cas12a没有影响。

3. Science子刊:我国科学家开发出一种可远程控制的基因编辑平台

DOI: 10.1126/sciadv.aav7199.

基因编辑最新研究进展一览
在一项新的研究中,来自中国南京大学、南京工业大学和厦门大学的研究人员开发出利用病毒将CRISPR-Cas9基因编辑工具运送到特定细胞中的一种替代方法,它涉及使用两种类型的光。相关研究结果发表在2019年4月3日的Science Advances期刊上,论文标题为“Near-infrared upconversion–activated CRISPR-Cas9 system: A remote-controlled gene editing platform”。在这篇论文中,他们描述了他们的新型载体以及它在试验用小鼠中的效果。论文通讯作者为南京大学的宋玉君(Yujun Song)教授、南京工业大学的王玉珍(Yuzhen Wang)副研究员和厦门大学的林友辉(Youhui Lin)副教授。
CRISPR-Cas9基因编辑工具是治疗遗传疾病的一场即将到来的革命,科学家们继续在各种应用中测试它的能力。鉴于当前的方法使用病毒将这种基因编辑工具递送到特定细胞中,一个研究领域涉及寻找它的替代载体系统。人们较早地就已知道这种病毒递送方法不可行,这是因为免疫系统可能会做出反应,或者更糟的是,这存在着触发肿瘤产生的风险。在这项新的研究中,中国研究人员提出了一种全新的方法:利用两种光来递送这种基因编辑工具。

他们的载体系统由对低能近红外辐射(NIR)敏感并发出紫外光的上转换纳米颗粒(upconversion nanoparticle, UCNP)组成。当近红外光照射在这些上转换纳米颗粒上时,这种光被吸收并转换成紫外光,所产生的紫外光会发射出去。

在细胞内部,这种载体系统可通过给皮肤照射近红外光加以激活。照射的近红外光穿过皮肤进入体内,并前去寻找这种载体系统。当近红外光被上转换纳米颗粒转化为紫外光时,它切割这种载体系统中的分子,从而释放出这种基因编辑工具来完成它的作用。

在实际的实验中,这些研究人员通过注射将CRISPR-Cas9工具直接递送至小鼠内部的癌性肿瘤中。当它安全就位时,他们将近红外光照射到位于肿瘤(和基因编辑工具)所在部位上方的皮肤上。当所产生的紫外光释放出这种基因编辑工具时,它开始编辑一种允许肿瘤生长的蛋白,最终结果就是肿瘤尺寸减小。

这些研究人员表示,他们的研究不仅表明一种基于光的载体能够与CRISPR-Cas9基因编辑一起发挥作用,而且还表明它能够安全地发挥作用并且提供直接的益处。

4. Nature:开发出Cas9-MMEJ可编程基因编辑方法,有望治疗143种由DNA微重复引起的疾病

DOI: 10.1038/s41586-019-1076-8

基因编辑最新研究进展一览
在一项新的研究中,来自美国马萨诸塞大学医学院的研究人员开发出一种利用CRISPR-Cas9和一种很少使用的DNA修复途径编辑和修复一种特定类型的与微重复(microduplication)相关的基因突变。这种可编程基因编辑方法克服了之前在基因校正中所遭遇的低效率。相关研究结果于2019年4月3日在线发表在Nature期刊上,论文标题为“Precise therapeutic gene correction by a simple nuclease-induced double-stranded break”。

论文共同通讯作者、马萨诸塞大学医学院分子、细胞与癌症生物学教授Scot A. Wolfe博士说,“这就像击中重置按钮(reset button)一样。我们不需要添加任何校正性的遗传物质,而是细胞将DNA重新拼接在一起,并移除微重复。这是基因校正的捷径,具有潜在的治疗吸引力。”

微重复是染色体发生变化而使得 DNA上的小片段被拷贝或复制。在某些基因中,当添加的核苷酸数量不能被3整除时,这些微重复就能够导致所谓的“移码突变”。这改变了基因向蛋白的翻译,从而导致功能丧失。由微重复引起的移码突变导致多达143种不同的疾病,包括肢带肌营养不良(limb-girdle muscular dystrophy)、赫曼斯基-普德拉克综合征(Hermansky-Pudlak syndrome)和家族黑蒙性白痴病(Tay-Sachs)。

Wolfe博士是CRISPR-Cas9和其他基于可编程核酸酶的基因编辑方法的专家。大多数这些技术都需要在缺陷基因处产生DNA链断裂并引入校正性的遗传物质。将新序列插入到DNA断裂中,并通过在细胞中发现的一种称为同源介导修复(homology-directed repair, HDR)的的先天性DNA修复机制进行修复。尽管在治疗上有希望,但是这种校正基因的方法是低效的并且具有其他的技术挑战。

Wolfe和论文共同通讯作者、马萨诸塞大学医学院威尔斯通肌肉营养不良中心主任、神经学教授Charles P Emerson Jr.博士认为可能存在更为直接的方法来校正由微重复引起的疾病。他们推断如果微同源介导的末端连接(microhomology-mediated end joining, MMEJ)途径可以被有效利用,而不是利用同源介导修复途径,它将会移除重复序列并恢复基因的功能序列。

与其他的细胞修复机制相比,MMEJ途径的效率更低,也更稀有。MMEJ途径通常会导致DNA断裂处的两侧发生缺失,而且MMEJ途径只负责一小部分DNA修复—据一些估计,不到10%的DNA修复。

Emerson博士有一个很有希望的疾病目标,用于评估这种编辑方法的可行性—由TCAP基因中的微重复引起的2G型肢带肌营养不良(LGMD2G)。Emerson实验室和Wolfe实验室构建的酿脓链球菌Cas9核酸酶(Strestococcus pyogenes Cas9, SpCas9)靶向TCAP基因的微重复中心附近的DNA断裂。他们接着利用SpCas9处理了源自LGMD2G患者的多能性干细胞。正如他们预测的那样,MMEJ修复机制移除了这种微重复的一个拷贝—有效地将DNA重新拼接在一起,拼接效率非常高,因而去除了突变的遗传物质并让这个基因得到恢复,从而能够产生正常的TCAP蛋白。

Emerson说,“对TCAP基因微重复进行基因编辑的简单性和高效性是一个非常激动人心的发现时刻,这就为当前无法治疗的LGMD2G开发一种治疗方法提供了一个独特的机会,这已成为我们的近期目标。”

有多少种由微重复引起的疾病可能利用MMEJ核酸酶基因编辑加以治疗呢?通过与马萨诸塞大学医学院儿科副教授Christian Mueller博士合作,这些研究人员证实与赫曼斯基-普德拉克综合征1型相关的HPS1基因中的微重复能够在患者细胞中加以校正。马萨诸塞大学医学院神经学助理教授Oliver King博士随后开发出计算方法来搜索人类基因组数据库,鉴定出143种与微重复相关的疾病可能能够利用他们的Cas9-MMEJ方法加以治疗。

Wolfe说,“从这样一个平常的开始,我们相信这种基于MMEJ的治疗策略的简单性、可靠性和有效性可能允许为许多当前无法治疗的疾病开发出基于核酸酶的基因校正疗法。”

5. Cell:操纵SKN-1A的蛋白序列编辑有望治疗阿尔茨海默病等神经退行性疾病

doi:10.1016/j.cell.2019.03.035.

基因编辑最新研究进展一览
在一项新的研究中,来自美国麻省总医院的研究人员发现细胞通过编辑一种关键的传感蛋白的氨基酸序列来感知蛋白酶体功能障碍并以一种之前未描述的方式作出反应的机制。相关研究结果发表在2019年4月18日的Cell期刊上,论文标题为“Protein Sequence Editing of SKN-1A/Nrf1 by Peptide:N-Glycanase Controls Proteasome Gene Expression”。
作为一种降解不需要的或者有缺陷的蛋白的细胞组分,蛋白酶体由约20种蛋白组成,这些蛋白形成一种结构,在这种结构中,不需要的细胞蛋白以一种以受到高度调节的方式被处理掉。蛋白酶体功能障碍可导致异常蛋白的沉积,这种异常蛋白的沉积是阿尔茨海默病等神经退行性疾病的特征,也可在正常衰老中观察到。

为了应对蛋白酶体功能障碍,健康细胞增加蛋白酶体的蛋白组分的产生。两年前,麻省总医院的Gary Ruvkun博士和Nicolas Lehrbach博士已鉴定出包括转录因子SKN-1A在内的一系列传感和信号传导蛋白允许秀丽隐杆线虫中的细胞检测蛋白酶体功能障碍并对此作出反应。在这项新的研究中,Ruvkun及其团队描述了SKN-1A及其哺乳动物同源蛋白Nrf1是如何通过添加一种称为聚糖的糖分子进行修饰的,这种修饰在细胞分泌的蛋白中是比较常见的,但在DNA结合调控蛋白中是很少见的。

在正常情况下,SKN-1A/Nrf1被蛋白酶体有效降解,这就使得这种蛋白成为蛋白酶体功能的一种天然的监测者。如果蛋白的过量聚集超过蛋白酶体的处理能力,那么SKN-1A/Nrf1就不会遭受完全降解,就与蛋白酶体基因附近的DNA结合,从而诱导额外的蛋白酶体产生直到这种蛋白再次被充分降解。

2016年,Lehrbach和Ruvkun已证实SKN-1A/Nrf1的活化需要对这种蛋白进行酶促切割以及添加和随后去除聚糖分子。但是,这些事件的功能意义尚不清楚。在这项新的研究中,他们发现这种从SKN-1A中移除聚糖分子的蛋白— PNG-1—不仅移除了这些聚糖分子,而且还编辑了SKN-1A中的氨基酸序列:将4个天冬酰胺残基转化为天冬氨酸。如果将天冬酰胺转化为一种不同的氨基酸,那么SKN-1A就会出现功能障碍。在PNG-1不存在下,通过基因手段导入天冬氨酸分子也可激活SKN-1A,这表明这种蛋白序列编辑而不是去糖基化是SKN-1A发挥功能的关键。这种新发现的通过氨基酸序列编辑控制蛋白酶体功能的机制代表了内源性蛋白的一种前所未有的翻译后修饰。

这些研究人员还发现,通过基因工程手段让SKN-1A过度活化,因而在遗传上将4个去糖基化的天冬酰胺改变为天冬氨酸,这对蛋白酶体维持和抗逆性产生显著影响。过度活跃的SKN-1A赋予对蛋白酶体抑制剂的极强抵抗力,并有效地“治愈”阿尔茨海默病线虫模型。

这些研究人员指出这一发现在癌症、衰老、神经退行性疾病和一种罕见的涉及蛋白NGLY1(线虫蛋白PNG-1的人类同源蛋白,它影响着很多神经细胞的功能)突变的人类疾病中具有重要的应用。在这项新的以秀丽隐杆线虫为研究对象的研究中,他们取得的发现表明这种人类疾病还涉及未能将Nrf1中的糖分子修饰的天冬酰胺编辑成天冬氨酸,从而使得蛋白酶体未能对蛋白聚集做出反应。采取对这些天冬酰胺进行预编辑的干预措施可能重新激活受影响患者的蛋白酶体基因。

Lehrbach说,“迄今为止,我们还不明白为何SKN-1A/Nrf1的序列编辑是它调节蛋白酶体基因表达所必需的。更深入的机制理解可能有助于开发治疗NGLY1缺乏症和其他神经退行性疾病的方法。寻找受到去糖基化依赖性序列编辑调控的其他蛋白也将是令人关注的。”

6. Nature:震惊!CRISPR碱基编辑器能够诱导大量的脱靶RNA编辑

doi:10.1038/s41586-019-1161-z.

基因编辑最新研究进展一览
在一项新的研究中,来自美国麻省总医院、哈佛医学院和哈佛大学陈曾熙公共卫生学院的研究人员报道近期开发的几种在单个DNA碱基中产生靶向变化的碱基编辑器能够在RNA中诱导广泛的脱靶效应。他们还描述了对碱基编辑器变体进行基因改造可显著降低RNA编辑的发生率,这同时也会增加在靶DNA编辑的精确度。相关研究结果于2019年4月17日在线发表在Nature期刊上,论文标题为“Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors”。
论文通讯作者、麻省总医院病理学系的J. Keith Joung博士说道,“大多数关于脱靶基因编辑的研究都集中在DNA上,但是我们发现这种技术也可以诱导大量的RNA改变。这一令人吃惊的发现表明,当考虑碱基编辑器在细胞中的不想要的脱靶效应时,需要考虑的不仅仅是基因变化。我们还发现构建选择性地降低脱靶RNA编辑同时保留想要的在靶DNA编辑的变体来减少这些影响是可行的。”

与CRISPR-Cas基因编辑核酸酶—它诱导靶双链DNA断裂,从而导致基因变化—不同的是, CRISPR碱基编辑器能够改变DNA链中的单个核苷酸而不用诱导这种双链DNA断裂。Joung解释道,如果可以将CRISPR-Cas核酸酶比作为剪刀,那么就可将碱基编辑器比作为铅笔。当使用CRISPR-Cas修饰形式的融合蛋白靶向结合到目标位点上时,碱基编辑器使用一种称为脱氨酶的酶修饰一个特定核苷酸,从而产生可导致特定DNA改变的变化—比如,将胞嘧啶改变为胸腺嘧啶。

虽然大多数科学家都专注于碱基编辑器的DNA编辑活性,但是最常用的胞嘧啶→胸腺嘧啶编辑器(C→T编辑器)中的脱氨酶最初是因它的修饰RNA的能力而被鉴定出的。这导致Joung及其团队研究它是否可能诱导脱靶RNA效应。他们在肝脏和胚胎肾细胞系中的实验表明,虽然他们测试的这种常用的碱基编辑器在靶DNA位点上诱导高效的编辑,但是它也导致整个转录组—在细胞中发生转录的全部RNA—中发生数万个胞嘧啶→尿嘧啶(C→U)编辑。当测试一种较新的腺嘌呤靶向碱基编辑器时,他们发现了类似的结果。

为了研究减少或消除不需要的RNA编辑的可能性,Joung团队筛选了16种具有脱氨酶改造版本的碱基编辑器(即碱基编辑器改造版本),从中鉴定出两种碱基编辑器改造版本与它们的原始版本同样高效地诱导在靶DNA编辑,同时诱导显著少的RNA编辑。实际上,这些SECURE(SElective Curbing of Unwanted RNA Editing, 选择性抑制不需要的RNA编辑)变体甚至要比未经基因改造的脱氨酶更精确地诱导所需的DNA编辑。

论文第一作者Julian Grünewald博士说,“我们利用这两类碱基编辑器观察到的数以万计的RNA编辑和这些变化发生的频率感到非常吃惊。我们也很高兴看到我们能够通过使用我们的SECURE碱基编辑器变体大幅降低这些不需要的RNA编辑。”

Joung指出,研究这些RNA编辑对CRISPR碱基编辑的实验和临床应用的任何潜在影响是他的团队正在采取的重要下一步。“我们发现,我们研究的这种广泛使用的胞嘧啶碱基编辑器当在一种人细胞系中表达时对细胞活力具有适度的影响,而SECURE变体则不会。对研究应用而言,正在使用碱基编辑器的科学家们将需要在他们的实验中考虑潜在的RNA 脱靶效应。对治疗性应用而言,我们的研究结果进一步论证了将碱基编辑器表达的持续时间限制在尽可能短的时间内,以及在安全评估中考虑RNA 脱靶效应的潜在影响并使之最小化的重要性。”

Joung补充道,“正在开展的研究工作的另一个重要领域是扩大我们的努力,以尽量减少这些不需要的脱靶RNA编辑。我们当前正在尝试设计SECURE腺嘌呤碱基编辑器并探索使用其他脱氨酶的而不是我们研究的碱基编辑器中使用的脱氨酶的胞嘧啶碱基编辑器的脱靶RNA效应。我们的目标是产生一套具有最小RNA编辑活性的碱基编辑器,从而可用于研究和治疗性应用。

7. JEM:利用CRISPR/Cas9对B细胞进行基因编辑有望开发出HIV疫苗

DOI: 10.1084/jem.20190287.

基因编辑最新研究进展一览
人体不能自然地保护自己免受HIV病毒感染—至少通常不能做到这一点。但是,在极少数情况下,受感染的个体会产生对抗这种病毒的广泛中和抗体(bNAb)。如今,在一项新的研究中,来自美国洛克菲勒大学的研究人员设计出一种方法,将这种对抗HIV的能力赋予给普通的免疫细胞。相关研究结果于2019年4月11日在线发表在Journal of Experimental Medicine期刊上,论文标题为“HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells”。论文通讯作者为洛克菲勒大学的Michel C. Nussenzweig博士。

Nussenzweig在bNAb上的研究已产生了新的在早期临床试验中显示出前景的HIV治疗方法。如今,他着眼于第二个目标:针对这种病毒的免疫接种。

在这项新的研究中,Nussenzweig和他的同事们使用CRISPR-Cas9基因编辑技术来修饰B细胞,即一种分泌抗体的白细胞。具体而言,他们对小鼠B细胞进行基因改造,使得它们自己产生人bNAb。他们发现,以这种方式发生改变的B细胞产生的抗体水平足以保护小鼠免受HIV感染,这表明这种技术最终可能用作一种免疫工具。

虽然这项研究仍处于早期阶段,但是它证实了通过基因编辑增强免疫应答的可行性。重要的是,这种技术不会影响生殖细胞,因而避免了有时由CRISPR干预引起的伦理问题。如果能够实现,这种新的免疫方法不仅可以用于治疗HIV感染,而且还可以用于治疗任何对特定抗体敏感的疾病。

8. Blood:利用CRISPR-Cas12a基因编辑有望治疗β-地中海贫血

doi:10.1182/blood-2019-01-895094.

基因编辑最新研究进展一览

在一项新的研究中,来自美国达纳法伯癌症研究所、波士顿儿童医院和马萨诸塞大学医学院等研究机构的研究人员通过将CRISPR-Cas12a基因编辑应用于患者自己的造血干细胞中,开发出一种治疗一种最为常见的遗传性血液疾病—β-地中海贫血—的策略。这种方法克服了之前的技术挑战,而且要比过去更有效地对造血干细胞进行编辑。相关研究结果近期发表在Blood期刊上,论文标题为“Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia”。论文第一作者为Shuqian Xu。论文通讯作者为Daniel Bauer博士和Scot Wolfe博士。
这新的研究发现这些经过基因编辑的造血干细胞产生得到基因校正的红细胞,因而能够产生功能性的血红蛋白。

两篇论文的论文通讯作者Daniel Bauer博士说,“我们认为我们的研究确定了一种可能治愈常见的血红蛋白疾病的策略。将基因编辑与自体干细胞移植结合在一起可能是一种治疗镰状细胞病、β-地中海贫血和其他血液疾病的方法。”

根据世界卫生组织(WHO)的统计,镰状细胞病和β-地中海贫血每年在世界范围内共影响33.2万人怀孕或分娩。这两种疾病都涉及β珠蛋白编码基因发生突变。在β-地中海贫血中,突变阻止红细胞产生足够多的携氧血红蛋白分子,从而导致贫血。在镰状细胞病中,突变导致血红蛋白改变形状,使得红细胞变形为僵硬的“镰刀”形状,从而阻塞血管。

在这项新的研究中,这些研究人员使用一种类似于CRISPR-Cas9的基因编辑方案来靶向涉及剪接突变—在β-珠蛋白编码基因附近的DNA片段出现差错改变读取这个基因以组装β-珠蛋白的方式—的β-地中海贫血形式。9名β地中海贫血患者捐献了他们的造血干细胞,这样就可在培养皿中操纵它们。对于其中的一些患者,这些研究人员利用另一种不同的酶— Cas12a—来更高效地靶向这些突变。CRISPR/Cas12a高效地进行基因编辑并恢复了来自每名患者的血细胞中β-珠蛋白编码基因的正常剪接。

为临床试验做准备

Bauer认为继续追求这种方法很重要。他说,“这些疾病是非常常见的遗传性疾病,特别是在世界上资源非常有限的地区。因此,我们需要一系列广泛的治疗选择,以便为尽可能多的患者提供治疗。”

波士顿儿童医院是生物技术公司蓝鸟生物(BlueBird Bio)的股权持有者,而且一些作者申请了与治疗性基因编辑相关的专利。

如果这种处于研究中的技术经证实是有益的,那么波士顿儿童医院可能会获得经济利益。与所有研究一样,波士顿儿童医院已采取并将继续采取一切必要措施,以确保研究对象的安全性,以及本研究所获得信息的有效性和完整性。

9. Nat Med:优化的CRISPR-Cas9基因编辑有望治疗镰状细胞病

doi:10.1038/s41591-019-0401-y.

基因编辑最新研究进展一览
在一项新的研究中,来自美国达纳法伯癌症研究所、波士顿儿童医院和马萨诸塞大学医学院等研究机构的研究人员通过将CRISPR-Cas9基因编辑应用于患者自己的造血干细胞中,开发出一种治疗一种最为常见的遗传性血液疾病—镰状细胞病(sickle cell disease)—的策略。这种方法克服了之前的技术挑战,而且要比过去更有效地对造血干细胞进行编辑。相关研究结果于2019年3月25日在线发表在Nature Medicine期刊上,论文标题为“Highly efficient therapeutic gene editing of human hematopoietic stem cells”。论文通讯作者为Daniel Bauer博士,论文第一作者为Yuxuan Wu和Jing Zeng。
这项新的研究发现这些经过基因编辑的造血干细胞产生得到基因校正的红细胞,因而能够产生功能性的血红蛋白。

Bauer说,“我们认为我们的研究确定了一种可能治愈常见的血红蛋白疾病的策略。将基因编辑与自体干细胞移植结合在一起可能是一种治疗镰状细胞病、β-地中海贫血和其他血液疾病的方法。”

根据世界卫生组织(WHO)的统计,镰状细胞病和β-地中海贫血每年在世界范围内共影响33.2万人怀孕或分娩。这两种疾病都涉及β珠蛋白编码基因发生突变。在β-地中海贫血中,突变阻止红细胞产生足够多的携氧血红蛋白分子,从而导致贫血。在镰状细胞病中,突变导致血红蛋白改变形状,使得红细胞变形为僵硬的“镰刀”形状,从而阻塞血管。

这项新的研究使用了CRISPR-Cas9技术,特别是马萨诸塞大学医学院的Scot Wolfe博士领导的一个研究团队进行基因修饰过的Cas9蛋白,来优化基因编辑。在之前对人造血干/祖细胞的基因组进行编辑的尝试中,一旦将这些基因编辑的细胞植入骨髓中,基因编辑的效率、特异性和长期稳定性就会发生变化。这种新技术提高了基因编辑的靶向性和持久性。

Wolfe说,“对造血干细胞群体进行高效编辑—理想情况下接近100%—对在患者中实现持久的治疗效果至关重要。通过科学界多个实验室的贡献,朝着这一目标的进展一直在推进。我的研究团队与Bauer实验室合作,致力于提高CRISPR-Cas9技术的递送和进入细胞核效率,以便实现对整个造血干细胞群体的近乎彻底的治疗性编辑。”

Bauer团队使用这种策略进行高度针对性的基因编辑。之前在波士顿儿童医院的研究已表明,让一种名为BCL11A的基因失活允许红细胞即便在出生后也会继续产生胎儿形式的血红蛋白。胎儿血红蛋白不会产生镰刀形状,能够代替有缺陷的“成年”血红蛋白。最近,Bauer发现了一个更安全的靶标:BCL11A基因的增强子,仅在红细胞中有活性。

Bauer说,“通过使用我们开发的这种新型的非常有效的方法,我们能够在我们收集的几乎所有的造血干细胞中对BCL11A的增强子进行编辑,从而克服了对这些细胞进行基因编辑所面临的一些技术挑战。在我们的实验中,95%以上的增强子序列拷贝以我们期望的治疗方式发生改变。”

这种策略使得携带来自镰状细胞病患者的造血干细胞的小鼠能够产生具有足够的胎儿血红蛋白的红细胞,从而阻止红细胞产生镰刀形状。Bauer团队发现这些经过基因编辑的造血干细胞在移植到骨髓中后产生得到基因校正的红细胞。随后,当从这些小鼠中分离出造血干细胞并移植到其他小鼠中时,这些造血干细胞再次定植并且仍然携带治疗性的基因变化。

当将这一策略应用于来自β-地中海贫血患者的造血干细胞时,它恢复了构成血红蛋白的珠蛋白链的正常平衡。

为临床试验做准备

这些研究人员正在采取措施将他们开发的BCL11A增强子编辑策略应用于临床。他们正在开发一种临床级、规模化的细胞产品制造方案,并进行获得美国食品药品管理局(FDA)批准所必需的安全性研究。他们计划从美国心肺血液研究所的镰状细胞病治愈计划中寻求资金资助,以便在患者中开展临床试验。

达纳法伯癌症研究所/波士顿儿童医院癌症血液疾病中心已开始进行对镰状细胞病进行基因治疗的临床试验。该方法通过将患者的造血干细胞暴露在一种携带着指令的慢病毒中来抑制红细胞前体细胞中的BCL11A基因表达,从而增加胎儿血红蛋白的产生。

Bauer认为继续追求这种方法很重要。他说,“这些疾病是非常常见的遗传性疾病,特别是在世界上资源非常有限的地区。因此,我们需要一系列广泛的治疗选择,以便为尽可能多的患者提供治疗。”

波士顿儿童医院是生物技术公司蓝鸟生物(BlueBird Bio)的股权持有者,而且一些作者申请了与治疗性基因编辑相关的专利。

如果这种处于研究中的技术经证实是有益的,那么波士顿儿童医院可能会获得经济利益。与所有研究一样,波士顿儿童医院已采取并将继续采取一切必要措施,以确保研究对象的安全性,以及本研究所获得信息的有效性和完整性。

10. bioRxiv:成功利用CRISPR-Cas9对爬行动物进行基因编辑

doi:10.1101/591446.

基因编辑最新研究进展一览
在一项新的研究中,来自美国佐治亚大学的研究人员发现一种可在爬行动物身上使用CRISPR-Cas9基因编辑工具的方法。相关研究结果近期发表在bioRxiv预印版服务器上,论文标题为“CRISPR-Cas9 Gene Editing in Lizards Through Microinjection of Unfertilized Oocytes”。在这篇论文中,他们描述了他们开发的这种技术,以及它在测试的蜥蜴中的效果。
随着科学家们试图更多地了解CRISPR-Cas9本身、它的工作机制及其潜在的应用,它已被用于各种各样的实验。不过,在早期,科学家们认为CRISPR不能与爬行动物一起使用,这是因为爬行动物具有独特的生殖系统—比如,雌性蜥蜴储存精子,仅在最方便的使用加以使用,这就使得注射CRISPR-Cas9工具较为困难(如果不是不可能的话)。此外,还存在将针插入卵壳而不损坏它和阻止胚胎发育的问题。但是,存在困难并未意味着不可能,正如这些研究人员发现的那样,他们开发出一种成功的解决方法:利用CRISPR-Cas9对几只蜥蜴中的细胞进行基因编辑。

为了在蜥蜴中使用CRISPR-Cas9,这些研究人员切开了几只测试的雌性蜥蜴并在受精前将这种编辑工具直接注射到卵子中,同时这些卵子仍然存在于母体的卵巢中,然后顺其自然发育。总之,他们将这种编辑工具注射到21只蜥蜴的146个卵子中。在他们的实验中,CRISPR-Cas9经编程后对酪氨酸酶编码基因进行编辑,其中这个基因负责确定蜥蜴的颜色—当它受到失活时,蜥蜴将患上白化病(albino)。他们报道,这种编辑技术成功了四次—4只患有白化病的蜥蜴出生了。他们指出他们的技术应当也适用于其他种类的蜥蜴。

在仔细研究患上白化病的蜥蜴中实际发生的情形之后,这些研究人员发现这些蜥蜴后代具有来自父本和母本的经过编辑的基因—这意味着CRISPR-Cas9在雌性蜥蜴中保持活性的时间比预期中的要长,从而导致父本基因在受精后的变化已经发生了。(生物谷Bioon.com)

Cell: 基因的翻译过程可能比想象的更为复杂

基因君


2019年6月7日 讯 /基因宝jiyinbao.com/ –来自Hubrecht研究所的Marvin Tanenbaum小组的研究人员表明,DNA的翻译过程比以前想象的要复杂得多。他们的研究发表在最近的《Cell》杂志上。

我们体内的每个细胞都含有相同的DNA,但不同的细胞,如脑细胞或肌肉细胞,具有不同的功能。细胞功能的差异取决于基因的选择性活化。存储在这些基因中的遗传信息由称为核糖体的细胞器翻译。

Cell: 基因的翻译过程可能比想象的更为复杂
(图片来源:Hubrecht Institute)

在最近这项研究中,研究人员开发了一种新方法来可视化我们在活细胞中的遗传信息的解码。他们能够以不同的颜色标记不同的蛋白质,并使用先进的显微镜观察每种蛋白质的翻译过程。

研究人员发现,错误翻译的发生频率惊人。在极端情况下,几乎一半的蛋白质都是通过与预期代码不同的顺序产生的。这些令人惊讶的发现表明,我们DNA中存储的遗传信息比以前认为的要复杂得多。基于这项新研究,我们的DNA可能编码了数千种以前未知的功能未知的蛋白质。“我们的研究揭示了非常重要的问题:所有这些新蛋白质的作用是什么?它们在我们体内是否具有重要功能?”(生物谷Bioon.com)

资讯出处:Translation of genes more complex than expected

原始出处:Sanne Boersma et al, Multi-Color Single-Molecule Imaging Uncovers Extensive Heterogeneity in mRNA Decoding, Cell (2019). DOI: 10.1016/j.cell.2019.05.001

健康一生

apasstour 医健游测序宝

登录

注册