美国首个针对体内基因突变的基因疗法获批
今日,业内传来一条重磅新闻——美国FDA宣布批准Spark Therapeutics的创新基因疗法Luxturna(voretigene neparvovec-rzyl)上市,治疗患有特定遗传性眼疾的儿童和成人患者。Luxturna也是首款在美国获批、靶向特定基因突变的“直接给药型”基因疗法。
“今日的批准标志着基因疗法领域的又一个‘第一次’,它不但有着全新作用机理,而且还将基因疗法应用到了癌症之外,治疗视力下降。这个里程碑进一步强调了这一突破性方法有望治疗广泛疾病的潜力。几十年来的研究努力在今年为罹患严重和罕见疾病的患者带来了3款基因疗法。我相信基因疗法会成为治疗的主流,甚至有望治愈许多最为严重和棘手的疾病。”美国FDA局长Scott Gottlieb博士在官方通告中对其有高度评价。
今日获批的Luxturna有望治疗一类叫做遗传性视网膜营养不良(hereditary retinal dystrophies)的遗传病。在人体内,超过220条基因里的突变,都可能会导致疾病出现,并最终使患者出现进展性的视觉下降。其中,由RPE65基因等位突变引起的疾病在美国大约影响了1000到2000人。在人体内,RPE65基因编码了对正常视力起重要作用的一种酶。因此,基因突变引起的RPE65酶水平下降或缺失会让患者的视力受损,最终导致失明。
基因疗法的横空出世让原本无药可治的遗传病患者看到了曙光。由Spark带来的Luxturna利用腺相关病毒技术,能将健康的RPE65基因直接引入到视网膜细胞中,让它们产生正常的RPE65酶,恢复患者的视力。在有41名患者参与的临床试验中,这一疗法的效果与安全性得到了有效的验证:接受治疗的患者在暗光下避开障碍的能力得到了显着提高,副作用也在可控范围内。先前,Luxturna已经获得了美国FDA颁发的优先审评资格和突破性疗法认定。今日的获批,也是对这款突破性疗法的最佳认可。
“Luxturna的批准打开了一扇通往基因疗法无限潜力的新大门,”美国FDA生物制剂评估与研究中心(CBER)的负责人Peter Marks博士说道:“RPE65基因等位突变相关的遗传性视网膜营养不良患者现在有了改善视力的新方法。之前,这样的希望相当渺茫。”
2017年可以说是基因疗法的元年。除了3款获美国FDA批准的基因疗法外,不少其他基因疗法也正在积极研发之中,并给一名又一名患者带来了生的希望。我们期待能在未来听到更多基因疗法的好消息。 (生物谷Bioon.com)
Nature:“万岁婴儿”基因组数据讲述人类迁徙秘辛
英国《自然》杂志3日报告了一项基因组学最新研究成果:一名约生活在11500年前阿拉斯加的人类婴儿基因组序列被测定。这同时也是迄今首个直接基因组证据,证明所有美洲原住民祖先都可追溯至晚更新世一次单一迁徙事件中的同一个源种群。
虽然一般认为,人类最先于更新世(地质时代第四纪的早期)通过白令大陆桥进入美洲定居,但是具体时间和方式仍是一个谜团。幸而,在2013年,科学家于阿拉斯加向阳河遗址发现两名人类婴儿的遗骸,它们可追溯至11500年前左右。
此次,美国马萨诸塞大学本·波特与丹麦哥本哈根大学研究人员艾斯科·威勒斯乐福的团队,利用基因组学技术测定了其中一名婴儿——USR1的全基因组序列。尽管另一名婴儿的DNA样本不足以进行基因组分析,但是研究显示二者是近亲。
测序后,他们对比了USR1婴儿样本和之前测定的当代、古代美洲原住民基因组,发现这名婴儿与现今的美洲原住民亲缘关系最近。他们认为,USR1婴儿样本代表了一个截然不同的种群,称之为“古白令人”,“古白令人”与其他美洲原住民的祖先起源于一个单一初始种群,该初始种群首先于36000年前左右与东亚人分离,但是其基因流一直持续到25000年前左右。
这些发现与所谓的“白令滞留模型”相符——即当人类到达白令海大陆桥上时,因别无选择只能在此“安营扎寨”,根据这一模型,有一个源种群的后代一直在东白令生活到至少11500年前。但是那时候,另一分支的美洲原住民已经在北美无冰川地区定居下来,并且分为两群,最终成为大部分美洲原住民的祖先。(生物谷Bioon.com)
Cancer Res:徐州医科大发现促进乳腺癌侵袭转移的新癌基因
2018年1月11日 讯 /生物谷BIOON/ –多聚嘧啶通道结合蛋白1(PTBP1)也被称为hnRNP1,属于广泛表达的核内不均一核糖体蛋白(hnRNP)家族。它的主要功能是结合靶基因的mRNA,调控其可变剪接或mRNA的稳定性。许多研究已经证明PTBP1异常表达与肿瘤的发生、发展密切相关。PTPB3是该家族中一个研究相对较少的成员。
最近在一项发表在国际学术期刊Cancer Research上的研究中,来自徐州医科大学的郑骏年教授等人发现PTBP3能够诱导乳腺肿瘤细胞发生上皮间充质转化,并促进肿瘤细胞的侵袭性生长和转移。PTBP3的表达上升与乳腺癌的淋巴结转移、组织学分级、TNM分期以及病人的5年不良生存率都存在显著相关性。
在人类乳腺上皮细胞中,PTBP3的过表达能够诱导上皮间充质转化(EMT)过程,增强细胞的迁移、侵袭和癌症干细胞样特性。研究人员发现PTBP3通过结合对EMT过程有重要调控作用的转录因子ZEB1的mRNA 3`UTR,阻止mRNA降解,进而调节了ZEB1的表达,导致上述表型的发生。如果ZEB1发生缺失,PTBP3将失去对EMT过程的诱导能力。
这些结果表明PTBP3能够通过控制ZEB1的表达对癌细胞的EMT过程进行调控,因此PTBP3也具有癌基因功能,或可成为癌症靶向治疗的潜在候选基因。(生物谷Bioon.com)
原始出处:
Pingfu Hou, et al. PTBP3-Mediated Regulation of ZEB1 mRNA Stability Promotes Epithelial–Mesenchymal Transition in Breast Cancer. Cancer Research, DOI: 10.1158/0008-5472.CAN-17-0883
常见细菌耐药性或给新基因疗法带来障碍
根据一项即将发表于某同行评议期刊的新研究,一种在实验室中非常受欢迎的基因编辑疗法在用于人体时可能引发免疫反应。但目前尚无法确定这会对新基因疗法造成多严重的问题,相关基因疗法旨在阻止缺陷基因带来的疾病。
“最大的问题将会是:它在治疗上究竟会有何影响?”美国哈佛大学和加斯林糖尿病中心干细胞生物学家、并未参加此项研究的Amy Wagers说。她表示,在大鼠中,这种基因编辑工具会引发免疫应答,但却仍是安全有效的。然而,没有人知道对人来说会发生什么。“这需要研究。”她说。
CRISPR-Cas9系统,这个被当作修饰DNA的“基因剪刀”,通常来源于金黄色葡萄球菌或脓链球菌。“很多人在到达成年时都接触过这两种病菌,他们的身体可能会记住这两种病菌,并由此在重新接触这些病菌后对其产生免疫反应。”斯坦福大学带领这一研究的儿科学家和干细胞生物学家Matt Porteus说。相关成果近日发表于预印本服务器bioRxiv上。
先前的暴露可能会让基因编辑无效,因为身体很快就会清除所有的CRISPR-Cas9蛋白。或者更糟糕的是,它可能使在这一领域已经存在了10多年的“脱轨”现象变成一场免疫风暴,相关问题已经在1999年导致一名年轻的基因疗法患者Jesse Gelsinger死亡。
自从2013年相关研究成果呈现井喷之后,这种经过病毒编辑而来的基因工具已经被生物医学领域备受推崇。“我们在分享所有人对开展Cas9基因编辑的兴奋,但我们同时要吸取基因疗法中得到的教训,而不是忽略发生问题的可能性。”Porteus说,“我们所有人都在考虑开展基于Cas9的基因疗法,所以应该认真地考虑这一潜在问题。”(生物谷Bioon.com)
1.7亿美元!诺华获得创新基因疗法开发许可
一个月前,Spark Therapeutics的创新基因疗法Luxturna(voretigene neparvovec-rzyl)获批上市。这也是首款在美国获批、靶向特定基因突变的“直接给药型”基因疗法。
今天,业内传来一条重磅新闻。诺华(Novartis)宣布,与Spark达成了合作协议,将在美国以外的地区共同开发和推广这款创新疗法。根据合作协议,诺华将支付给Spark公司1.05亿的前期付款,总金额有望达到1.7亿美元。
去年获批的Luxturna有望治疗一类叫做遗传性视网膜营养不良(hereditary retinal dystrophies)的遗传病。在人体内,超过220条基因里的突变,都可能会导致该疾病出现,并最终使患者出现进展性的视觉下降。其中,由RPE65基因等位突变引起的疾病在美国大约影响了1000到2000人。在人体内,RPE65基因编码了对正常视力起重要作用的一种酶。因此,基因突变引起的RPE65酶水平下降或缺失会让患者的视力受损,最终导致失明。
由Spark带来的Luxturna利用腺相关病毒技术,能将健康的RPE65基因直接引入到视网膜细胞中,让它们产生正常的RPE65酶,恢复患者的视力。在有41名患者参与的临床试验中,接受治疗的患者在暗光下避开障碍的能力得到了显着提高。
“通过诺华大型的现有市场推广团队、眼科医学设施、以及对于遗传学相关药物的承诺,我们期待美国之外,更多确诊RPE65基因等位突变相关的遗传性视网膜营养不良患者能用上这款尚在研究中的疗法,” Spark Therapeutics的首席商业官Dan Faga先生说道:“我们期望能通过本次合作,进一步开发我们的在研基因疗法管线,创造一个让生命不被遗传病所限的世界。”
2017年是基因疗法的元年。我们期待在今年能听到更多有关基因疗法的好消息!(生物谷Bioon.com)
CRISPR的未来:五种基因编辑将改变世界
elife:干细胞基因组揭示衰老的秘密
资讯出处:Clues to aging found in stem cells’ genomes
国家食品药品监督管理总局发布《人表皮生长因子受体(EGFR)突变基因检测试剂(PCR法)注册技术审查指导原则》
小编推荐会议:2018先进体外诊断行业峰会
为加强医疗器械产品注册工作的监督和指导,进一步提高注册审查质量,国家食品药品监督管理总局组织制定了《人表皮生长因子受体(EGFR)突变基因检测试剂(PCR法)注册技术审查指导原则》《幽门螺杆菌抗原/抗体检测试剂注册技术审查指导原则》《抗人球蛋白检测试剂注册技术审查指导原则》《肠道病毒核酸检测试剂注册技术审查指导原则》,现予发布。
附件1
人表皮生长因子受体(EGFR)突变基因检测试剂(PCR法)注册技术审查指导原则
本指导原则旨在指导注册申请人对人表皮生长因子受体(Epidermal Growth Factor Receptor,以下简称为EGFR)突变基因检测试剂注册申报资料的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。
本指导原则是针对EGFR突变基因检测试剂的一般要求,申请人应依据产品的具体特性确定其中内容是否适用,若不适用,需具体阐述理由及相应的科学依据,并依据产品的具体特性对注册申报资料的内容进行充实和细化。
本指导原则是对申请人和审查人员的指导性文件,但不包括注册审批所涉及的行政事项,亦不作为法规强制执行,如果有能够满足相关法规要求的其他方法,也可以采用,但需要详细阐明理由,并对其科学合理性进行验证,提供详细的研究资料和验证资料,相关人员应在遵循相关法规的前提下使用本指导原则。
本指导原则是在现行法规和标准体系以及当前认知水平下制定的,随着法规和标准的不断完善,以及科学技术的不断发展,本指导原则相关内容也将适时进行调整。
一、范围
本指导原则所述EGFR突变基因检测试剂主要是指基于核酸聚合酶链式反应(PCR法),以EGFR突变基因为检测目标,体外定性检测细胞学样本、病理组织学样本、外周血样本或其他体液样本提取的核酸组分中的目标基因序列。
EGFR是原癌基因c-erbB1的表达产物,是表皮生长因子受体(HER)家族成员之一。HER家族由EGFR/HER1/erbB1、HER2/neu/erbB2、HER3/erbB3及HER4/erbB4四个分子构成,在细胞的生长、增殖和分化等生理过程中发挥重要的调节作用。
EGFR是一种跨膜酪氨酸激酶受体,该受体激酶域激活与癌细胞增殖、转移和凋亡等多种信号传导通路有关。肺腺癌患者EGFR基因敏感突变的亚裔人群阳性率要高于高加索人群。EGFR突变主要发生在胞内酪氨酸激酶(TK)区域的前四个外显子上(18~21),目前发现的TK区域突变有30多种。缺失突变主要发生在外显子19上,最常见的是del E746-A750,替代突变最常见的是发生在外显子21上的L858R,复制或插入突变发生在外显子20上。其中外显子20上的T790M替代突变为一代EGFR酪氨酸激酶抑制剂(Tyrosine Kinase Inhibitor,TKI)的耐药突变。此外,还有许多类型的突变临床意义尚不明确。EGFR作为癌症治疗的分子靶标受到普遍关注,并已陆续开发出了吉非替尼(Gefitinib)、厄洛替尼(Erlotinib)和埃克替尼(Icotinib)等TKI。
肿瘤组织样本仍是获取肿瘤基因相关信息的主要来源,但大部分晚期肺癌患者已失去手术机会或由于种种原因不能获取肿瘤组织样本。研究结果表明,实体肿瘤患者的外周血中存在来源于凋亡、坏死的肿瘤细胞的游离DNA。对晚期肺癌患者,在不能获取肺癌组织样本时,可以选择外周血样本进行EGFR突变基因检测;如可以获得病理组织时,建议以病理组织提取检测结果为优先考虑。当肿瘤组织难以获取时,外周血样本可以是EGFR突变基因检测方式的重要补充手段之一。
本指导原则相关技术要求主要基于荧光探针PCR方法的EGFR突变基因试剂进行评价,如基于荧光探针PCR原理的同类试剂不适用本指导原则部分相关技术要求,申请人应阐述不适用的理由并结合自身产品特性提出科学合理的评价方法,申请人可根据实际产品特性选择适合的方法或结合本指导原则补充需要的评价和验证。对于其他分子生物学检测技术,如适用,申请人可参考本指导原则部分相关技术要求进行性能评价。
本指导原则适用于进行首次注册申报和相关许可事项变更的产品。本指导原则不适用于EGFR基因拷贝数变化检测、核酸序列测定、免疫组化技术、荧光原位杂交法。
EGFR病理组织学样本和外周血样本检测中存在较大差异,在参考品及质控品设置、分析性能评估、临床评价要求、产品技术要求、产品说明书等多个方面均存在不同要求,为便于申请人对指导原则进行理解,故将产品预期用途用于组织学样本检测和预期用途用于外周血样本检测试剂申报要求进行分开说明。需要说明的是,申请人申报产品如同时包括外周血样本和组织学样本,对于相同部分,申请人可合并提交注册申报资料。如原注册产品预期用途中仅为组织样本类型,需增加外周血样本类型,考虑到外周血样本类型与组织样本类型中EGFR片段长度,样本中突变比例等差异,申请人除完成许可事项变更申报资料要求,还应提交扩增反应体系性能评价、外周血分析性能评价、外周血样本保存及处理、临床评价等研究资料。
申报试剂作为肿瘤个体化伴随检测试剂,主要用于人非小细胞肺癌(NSCLC)个体化治疗。如申请人将EGFR申报试剂运用于其他癌症类型的研究,申请人可参照本指导原则适用的研究体系,但应强调的是,肿瘤药物个体化检测试剂与治疗药物具有关联性,申请人需结合EGFR突变基因检测与治疗药物预期用途所限定的癌症类型进行联合评价研究。
二、注册申报资料要求
(一)综述资料
1.产品预期用途。描述产品的预期用途,与预期用途相关的临床背景情况。EGFR突变基因与不同人群之间的关联,不同药物对不同EGFR突变类型的患者治疗效果描述。如适应症的发生率、易感人群等,相关的临床或实验室诊断方法等。
2.产品描述。描述产品所采用的技术原理,主要原材料的来源及制备方法,主要生产工艺过程,质控品、校准品的制备方法情况。
3.有关生物安全性方面说明。由于体外诊断试剂中的主要原材料可能是由各种动物、病原体、人源的组织和体液等生物材料经处理或者添加某些物质制备而成,人源性材料须对有关传染病(HIV、HBV、HCV等)病原体检测予以说明,并提供相关的证明文件。其他动物源及微生物来源的材料,应当提供相应的说明文件,证明其在产品运输、使用过程中对使用者和环境是安全的,并对上述原材料所采用的灭活等试验方法予以说明。
4.有关产品主要研究结果的总结和评价。
5.其他。包括同类产品在国内外批准上市的情况。相关产品所采用的技术方法及临床应用情况,申请注册产品与国内外同类产品的异同等。对于新研制的体外诊断试剂产品,需要提供被测物与预期适用的临床适应症之间关系的文献资料。
(二)主要原材料的研究资料
此类产品的主要原材料应包括EGFR突变基因检测试剂的所有主要组成成分,如引物、探针、酶、反应缓冲液、提取成分(如包含)等。如为申请人自行研制的主要原材料,申请人应对EGFR目的基因序列确定、引物和探针选择、酶的选择和验证等实验过程予以详述;并提供对各主要原材料的性能研究资料,如:外观、纯度、蛋白浓度、功能性研究等。制备完成的原料成品应进行质量检验以确认其符合标准要求,整个生产工艺应稳定可控。如为申请人外购主要原材料,应详述每一原材料外购方来源,提交外购方出具的原材料性能指标及质量控制资料,并详述申请人对外购主要原材料的各指标质量要求以及确定该原材料作为本产品主要原材料的详细依据。
1.核酸分离/纯化组分(如有)的主要组成、原理介绍及相关的验证资料。
2.PCR组分的主要原料(包括引物、探针、各种酶及其他主要原料)的选择、制备、质量标准及实验研究资料,主要包括以下内容:
2.1脱氧三磷酸核苷(dNTP)
核酸的组成成分,包括:dATP、dUTP、dGTP、dCTP和dTTP;应提交对其纯度、浓度、保存稳定性等的验证资料。
2.2引物
应优化每一单一突变基因专用引物的相对浓度,避免多个核酸靶序列同时扩增时出现相互影响和竞争。引物设计时,应对反应体系中所有引物进行筛选,避免引物二聚体形成。为保证每一靶序列检测准确性,EGFR检测试剂中每一突变基因引物的浓度必须进行优化,应根据靶序列突变性质、C+G含量等确定每一突变基因引物的长度和浓度,且单一引物最适浓度还应考虑所有引物浓度之间的相互影响。由一定数量的碱基构成的特定序列,通常采用DNA合成仪人工合成,合成后经聚丙烯酰胺凝胶电泳(PAGE)或其他适宜方法纯化。需提供对引物的分子量、纯度、稳定性、功能性实验等的验证资料。如为外购,还应提供合成机构出具的合成产物的质检证明,如PAGE结果或高效液相色谱法(HPLC)分析图谱。应对引物结构进行对比,引物扩增区段不应有重复序列。
2.3探针
特定的带有示踪物(标记物)的已知核酸片段(寡聚核苷酸片段),能与互补核酸序列退火杂交,用于特定核酸序列的探测。合成后经PAGE或其他适宜方法纯化,在5′-端(和/或3′-端)进行标记,并经HPLC或其他适宜方法纯化,纯度应达到HPLC纯。应提供合成机构出具的合成产物质检证明,如HPLC分析图谱,应对探针的分子量、纯度及标记的荧光基团进行核实,并进行功能性试验验证。
2.4酶
DNA聚合酶,应具有DNA聚合酶活性,无核酸内切酶活性,具热稳定性,如:94℃保温1小时后仍保持50%活性。尿嘧啶DNA糖基化酶(UDG/UNG),具有水解尿嘧啶糖苷键的活性,无核酸外切酶及核酸内切酶活性。逆转录酶,具逆转录酶活性,无核酸内切酶活性。应对酶活性进行合理验证。
3.核酸类检测试剂的包装材料和耗材应无脱氧核糖核酸酶(DNase)和核糖核酸酶(RNase)污染。
4.企业内部参考品
企业内部参考品是保证产品性能稳定性以及检测值可溯源的重要构成之一。参考品研究应包括原料选择、制备过程、定值研究、评价指标、统计学分析等。申请人应对内部参考品的来源、基因序列设置等信息进行精确的实验验证,并提供参考品溯源过程的测量程序或参考方法的相关信息及详细的验证资料。申请人应根据产品性能验证实际情况自行设定内部参考品,阳性参考品应着重考虑EGFR突变基因型别要求,阴性参考品则主要涉及对分析特异性(交叉反应)的验证情况。如该类产品有国家标准品,在不低于国家参考品要求前提下,申请人可以结合实际情况设置合理的内部参考品。具体要求如下:
4.1组织样本参考品设置要求
阳性参考品中常见基因突变位点建议采用临床样本提取的DNA储备液或细胞系作为原料。其他突变位点可采用DNA储备液、细胞系或EGFR突变扩增产物模拟样本作为原料。如采用EGFR突变扩增产物作为阳性参考品,应尽可能模拟真实样本,需要对样本基质进行基质效应研究。
试剂盒(分型或不分型)所能覆盖的所有突变位点均应设置相应的阳性参考品,每个突变位点设置不同突变百分率梯度,其中至少应包括高浓度和低浓度阳性参考品。阳性参考品的突变形式及拷贝数需采用有效方法(如测序方法或数字化PCR等)进行确认,并明确接受标准。
4.1.2阴性参考品
可采用经确认无相应靶突变序列的DNA储存液。如野生型人基因组DNA,HER家族DNA等。
检测限参考品的原料要求参考阳性参考品,需包括所有的突变类型。在进行最低检测限性能评估时,应设置多个梯度,主要从扩增反应终体系总核酸浓度和突变序列所占百分率两个方面进行评价,建议采用95%(n≥20)的阳性检出率作为最低检测限确定的标准。
精密度参考品原料要求参考阳性参考品,需至少包括弱阳性、中或强阳性水平的精密度验证,中/强阳性精密度参考品以常见突变类型或理论上较难测得的突变序列为主;同时设置阴性参考品精密度验证。
阳性参考品中常见突变基因位点建议采用临床样本提取的DNA储备液或细胞系作为原料。考虑外周血中EGFR突变基因DNA含量较低,其他突变位点可以采用DNA储备液或细胞系或EGFR突变基因扩增产物模拟样本,样本基质应为人血浆或人工模拟样本,使用人血浆时,应提前确认人血浆中DNA背景浓度;使用人工模拟样本时,应尽可能模拟真实样本,并对模拟样本进行基质效应研究。
可采用经确认无相应靶突变序列的DNA储存液。如野生型人基因组DNA,HER家族其他DNA等。
检测限参考品的原料要求参考阳性参考品,需包括所有的突变类型。在进行最低检测限性能评估时,应设置多个梯度,建议采用95%(n≥20)的阳性检出率作为最低检测限确定的标准。
精密度参考品原料要求参考阳性参考品,需至少包括弱阳性、中或强阳性水平的精密度验证,中/强阳性精密度参考品以常见突变类型或理论上较难测得的突变序列为主,同时设置阴性参考品精密度验证。
试剂盒的质控体系通过设置各种试剂盒对照品来实现,质控体系需考虑对样本核酸分离/纯化、配液及加样、试剂及仪器性能、扩增反应抑制物(管内抑制)、交叉污染、靶核酸降解等因素可能造成的假阴性或假阳性结果进行合理的质量控制。对照品可采用质粒、假病毒或临床样本的核酸提取液等进行配置。申报资料应对试剂盒对照品有关原料选择、制备、定值过程等试验资料详细说明。申请人应视申报产品具体情况设置合理的试剂盒对照品(质控品),试剂盒质控体系主要考虑以下几方面要求:
申请人应对各阳性对照品(质控品)的Ct值提出明确的范围要求。如样本反应管内可以覆盖多种突变序列的检测(分型或不分型),相应的阳性对照管应选择较常见突变序列或理论上较难测得的突变序列作为阳性对照。
阴性对照可以是含有野生型核酸序列的核酸溶液,也可以是空白对照,对交叉污染导致的假阳性结果进行质控。阴性对照品应参与样本核酸的平行提取。
内对照(内标)可以对管内抑制导致的假阴性结果进行质量控制,申请人应对内对照(内标)的引物、探针和模板浓度做精确验证,既要保证内标荧光通道呈明显的阳性曲线又要尽量降低对靶基因检测造成的抑制。
生产工艺及反应体系的研究资料应能对反应体系涉及到的基本内容,如:临床样本用量、试剂用量、反应条件、质控体系设置、阈值循环数(Ct)值或临界值确定等,提供确切的依据,配制工作液的各种原材料及其配比应符合要求,原材料应混合均匀,配制过程应对pH、电导率、离子浓度等关键参数进行有效控制。主要包括以下内容:
3.基因位点选择、方法学特性介绍。
4.确定最佳PCR反应体系的研究资料,包括酶浓度、引物/探针浓度、dNTP浓度、阳离子浓度等。
5.确定PCR反应各阶段温度、时间及循环数的研究资料。如反应体系相同,多个突变基因在相同反应条件下核酸扩增效率是否存在差别。
6.对于基线阈值(threshold)和阈值循环数(Ct)确定的研究资料。应明确相同反应条件下,多个基因类型Ct是否相同。
7.不同适用机型的反应条件如果有差异应分别详述。
8.如申报产品包含核酸分离/纯化试剂,应提交对核酸分离/纯化过程进行工艺优化的研究资料。
1.1最低检测限
病理组织学样本类型最低检测限研究应包括扩增反应终体系中的突变序列百分率和申报产品反应体系中总核酸浓度两个因素。
1.2.2.1申请人应根据试剂盒所采用的样本类型确定潜在的干扰物质,如:常见治疗药物,病理组织处理过程及样本穿刺过程的缓冲液、处理液等。
申请人应对每项精密度指标的评价标准做出合理要求。具体实验方法可以参考国际或国内有关体外诊断产品性能评估的文件进行。针对本类产品的精密度评价主要包括以下要求:
1.3.1对可能影响检测精密度的主要变量进行验证,除申报试剂(包括核酸分离/纯化组分)本身的影响外,还应对PCR分析仪、操作者、地点等要素进行相关的验证。
各水平、各突变位点的阳性参考品均应按要求检出阳性,考虑到浓度梯度的不同,应对各水平阳性参考品设置相应Ct值的限制;阴性参考品在各个引物探针组合的检测条件下均应检出为阴性;如有野生型参考品的设置,在其相应的引物探针组合下检测应为阳性。
对于经福尔马林固定石蜡包埋组织切片样本,申请人应对组织样本保存温度,保存年限进行限定。建议明确组织切片样本的规范采集标准,验证不同时间段保存的组织样本对检测结果的影响。
申请人需设置评价方案(如:对同一NSCLC FFPE组织样本中段部分平行切去10份切片样本等)和评价指标,评价样本核酸提取过程的重复性。
应检测核酸的含量,设置反应体系需要的核酸含量上限和下限。如反应体系中起始DNA浓度过高,可能导致反应体系发生非特异性扩增,产生假阳性结果。如反应体系中起始DNA浓度过低,可能导致反应体系无靶序列扩增反应,产生假阴性结果。采用紫外-可见分光光度计对DNA浓度进行定量,通过260 nm/280 nm处的吸光度比值(OD260/OD280)或其他方法评价其纯度。设置反应体系所需初始DNA含量范围,如单位体积DNA浓度超过所需浓度上限或下限,应提供相应的改进措施。同时,应对核酸提取物的保存时间,保存温度进行验证。并评价冻融次数、储存条件等对样本提取后核酸序列稳定性的影响。
在样本提取前、提取过程、提取后以及在储存期间,核酸会发生不同程度地降解。为使降解降低到最低程度(提取前或提取后),应避免样品的多次冷冻/融化。必要时,申请人应评价提取前、提取后的冻融次数、储存条件等因素。在长时间储存后,应在使用前评价核酸的完整性。比较检测结果与储存前检测结果的一致性,如采用琼脂糖凝胶电泳或者内参基因PCR检测等方法。
2.1最低检测限
EGFR在外周血中含量较低且片段较短,易于降解。在评价该部分最低检测限时,建议将拟定量的DNA储备液、细胞系或EGFR突变扩增产物放入确定体积的血浆中,然后逐步稀释,每个稀释浓度重复检测3次,待确定外周血中最低检测限后,在外周血最低检测限水平附近再额外检测部分接近最低检测限的样本,确认最低检测限DNA浓度。申请人可设置一个基础浓度范围,如从50pg/L浓度进行稀释,至少包括目标检测限和检测限上下至少各2个梯度比例范围的研究资料,应对本试剂可检测的所有基因型别按照上述方法验证最低检测限。申请人同时需说明总DNA浓度的确定方法。
申请人应对每项精密度指标的评价标准做出合理要求。具体实验方法可以参考国际或国内有关体外诊断产品性能评估的文件进行。针对本类产品的精密度评价主要包括以下要求:
各水平、各突变位点的阳性参考品均应按要求检出阳性,考虑到浓度梯度的不同,应对各水平阳性参考品设置相应Ct值的限制;阴性参考品在各个引物探针组合的检测条件下均应检出为阴性;在其相应的引物探针组合下检测应为阳性。
外周血采集后,应对外周血存放条件、存放时限及温度设置等进行验证,包括采用抗核酸降解或防细胞裂解采血管的要求。采样所用的防腐剂、抗凝剂、保护剂及相关试剂材料不应对核酸扩增及检测过程造成干扰。申请人还需对抗凝剂、防腐剂、保护剂等成分进行验证。
样本核酸的分离/纯化主要有以下目的:富集靶核酸浓度、保证靶核酸序列的完整性、增加PCR模板溶液均一性、去除PCR抑制物。样本核酸分离/纯化是决定后续核酸扩增过程成败的要素之一。一般而言,相对于单一靶序列的检测,多基因序列检测对样本核酸的浓度和质量更为敏感,核酸提取步骤对于成功获得结果至关重要。应确保具有满足检测反应体系数量和质量的核酸用于检测。不同提取方法产出的核酸的浓度和质量不同(如:分子量、纯度、单链/双链、pH值变化)。如有多种不同的提取方法和样品基质被推荐用于检测,应确保同一反应体系中不同基因片段和对照品的提取效率相近。因此,无论申报产品是否含有核酸分离/纯化的组分,申请人都应对核酸分离/纯化环节做充分的验证。除最大量分离出目的核酸外,还应有相应的纯化步骤,尽可能去除PCR抑制物。常见的核酸分离纯化均有其优势和不足,申请人应结合申报产品的特性,合理选择核酸分离/纯化试剂,并提供详细的验证资料。
应检测核酸的含量,设置反应体系所需初始DNA含量范围,如单位体积DNA浓度低于所需浓度,应提供相应的改进措施。通过荧光染料法或其他方法评价其纯度。同时,应对核酸提取物的保存时间和保存温度进行验证。
在样本提取前、提取过程、提取后以及在储存期间,核酸会发生不同程度地降解。为使降解降低到最低程度(提取前或提取后),应避免样品的多次冷冻/融化。必要时,申请人应评价提取前、提取后冻融次数、储存条件等因素。在长时间储存后,应在使用前评价核酸的完整性。比较检测结果与储存前检测结果的一致性,如采用琼脂糖凝胶电泳或者内参基因PCR检测等方法。
在设定申报试剂检测结果cut-off值确定依据时,应包括cut-off值研究方案、设定评价标准、研究过程以及研究原始数据等。方案应考虑不同影响检测结果的因素,如人群流行病学信息、疾病类型等。应列举cut-off值计算过程中采用的所有统计学方法。如果试剂存在灰区,应解释说明如何确定灰区范围。明确临界值在不同的样本类型是否有差异。应在独立样本人群中对研究拟确定的cut-off值进行充分验证。
稳定性研究资料主要涉及申报试剂的稳定性。主要包括效期稳定性(有效期)、开瓶稳定性、复溶稳定性、机载稳定性(如适用)、运输稳定性及冻融次数限制等研究,申请人可根据实际需要选择合理的稳定性研究方案。稳定性研究资料应包括研究方法的确定依据、具体的实施方案、详细的研究数据以及结论。对于效期稳定性研究,应提供至少三批样品在实际储存条件下保存至成品有效期后的研究资料。
申请人应在符合要求的临床机构,在满足临床试验最低样本量要求的前提下,根据产品临床预期用途、相关疾病的流行率和统计学要求,制定能够证明其临床性能的临床试验方案,同时最大限度地控制试验误差,提高试验质量并对试验结果进行科学合理的分析。
临床试验实施前,研究人员应从流行病学、统计学、临床医学、检验医学等多方面考虑,设计科学合理的临床研究方案。各临床研究机构的方案设置应基本一致,且保证在整个临床试验过程中遵循预定的方案实施,不可随意改动。整个试验过程应在临床研究机构的实验室内并由本实验室的技术人员操作完成,申报机构的技术人员除进行必要的技术指导外,不得随意干涉实验进程,尤其是数据收集过程。
建议申请人在选择临床机构时,应在国内不同区域选择临床机构,尽量使各机构的临床样本有一定的区域代表性;临床研究机构进行EGFR突变基因检测应建立PCR标准实验室,并建立实验室质量管理体系以确保检测结果的准确性。PCR实验室技术人员应接受过PCR上岗培训,且技能熟练。操作人员必须是接受过良好培训的技术人员,实验操作人员应有足够的时间熟悉检测系统的各环节(仪器、试剂、质控及操作程序等),熟悉评价方案。在整个实验中,考核试剂和参比方法都应处于有效的质量控制下,最大限度保证试验数据的准确性及可重复性。
科学研究表明,NSCLC病理组织样本与外周血样本EGFR突变基因阳性检出率存在差异,且在EGFR-TKIs药物临床研究中两类样本类型的EGFR-TKIs药效学评价方式也存在差异。因此,本部分对病理组织样本类型临床研究要求与外周血样本类型临床研究要求分别进行说明,其中病理组织样本总临床样本例数不少于1000例,包含4.1项中一致性评价临床例数要求与5项中EGFR突变基因个体化治疗相关临床例数要求。外周血样本总临床样本例数不少于1000例,包含4.2项中一致性评价临床例数要求与5项中EGFR突变基因个体化治疗相关临床例数要求。
申请人应提供以下关于测序部分的详细试验资料,并经临床试验机构签章确认。
临床试验应以非小细胞肺癌肿瘤患者为主要研究对象,其中应涵盖考核试剂所声称的所有基因型且每种突变型别应有一定量的阳性病例。对于阴性病例的选择,也应考虑到交叉反应验证的需要,从临床角度考察其分析特异性。若产品适用于多种样本类型,则应对所有样本类型均进行临床验证。具体要求如下:
4.2外周血样本类型具体要求
申请人应提供以下关于测序部分的详细试验资料,并经临床试验机构签章确认。
临床试验应以非小细胞肺癌肿瘤患者为主要研究对象,其中应涵盖考核试剂所声称的所有基因型且每种突变型别均应有一定量的阳性病例。对于阴性病例的选择,也应考虑到交叉反应验证的需要,从临床角度考察其分析特异性。具体要求如下:
在采用对比实验进行一致性研究时,临床试验结果的统计应选择合适的统计方法,如检测结果一致性分析、阴性/阳性符合率、阳性预测值、阴性预测值、kappa检验等,统计分析应可以证明不同方法的检测结果有无明显统计学差异。在临床研究方案中应明确统计检验假设,设置a值及P值假设条件,即评价考核试剂与参比试剂是否等效的标准。
表1 人群基本特征统计表
根据《体外诊断试剂临床试验技术指导原则》(国家食品药品监督管理总局通告2014年第16号)的要求,临床试验报告应该对试验的整体设计及各个关键点给予清晰、完整的阐述,应该对整个临床试验实施过程、结果分析、结论等进行条理分明的描述,并应包括必要的基础数据和统计分析方法。建议在临床总结报告中对以下内容进行详述。
对不同样本类型以及不同年龄段人群的检测结果可能存在一定差异,故建议对不同样本类型及不同年龄段人群分别进行统计分析,以对考核试剂的临床性能进行综合分析。
对总体结果进行总结性描述并简要分析试验结果,对本次临床研究有无特别说明,最后得出临床试验结论。
应符合《医疗器械产品技术要求编写指导原则》(国家食品药品监督管理总局通告2014年第9号)要求,明确产品各项性能评价要求以及试验方法,将申报产品的主要原材料、生产工艺及半成品检定等内容作为附录附于产品技术要求正文后。附录中应将待测靶基因的基因位点,引物/探针设计及来源,参考品设置、来源及验证情况,各种酶的来源、特性及验证等重点内容予以明确。
根据《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号)的要求,首次申请注册的第三类体外诊断试剂产品应在具有相应医疗器械检验资质和承检范围的医疗器械检验机构进行连续3个生产批次样品的注册检验。对于已经有国家标准品的检验项目,在注册检验时应采用相应的国家标准品进行,对于目前尚无国家标准品的项目,生产企业应建立自己的参考品体系并提供相应的内部参考品。
说明书承载了产品预期用途、标本采集及处理、检验方法、检验结果解释以及注意事项等重要信息,是指导实验室工作人员正确操作、临床医生针对检验结果给出合理医学解释的重要依据。产品说明书的撰写应符合《体外诊断试剂说明书编写指导原则》(国家食品药品监督管理总局通告2014年第17号)要求,进口体外诊断试剂的中文说明书除格式要求外,其内容应尽量保持与原文说明书的一致性,翻译力求准确且符合中文表达习惯。产品说明书中相关技术内容均应与申请人提交的注册申报资料中的相关研究结果保持一致。如产品说明书中部分内容引用自参考文献,则应以规范格式对此内容进行标注,并列明所有引用文献信息。
结合《体外诊断试剂说明书编写指导原则》的要求,下面对EGFR突变基因检测试剂说明书的重点内容进行详细说明,以指导注册申请人更合理地完成说明书编制。
1.1本产品用于体外定性检测人非小细胞肺癌(NSCLC)中肿瘤病理组织或外周血或其他体液样本的EGFR突变基因。
2.1对试剂盒检测能够覆盖的所有突变位点或突变类型进行详细描述(靶序列长度、基因座位、突变类型及相关特征等),对引物及探针设计、不同样品反应管组合、对照品设置及荧光信号检测原理等进行逐项介绍。
2.2详细介绍核酸分离/纯化方法、原理等。
3.1详细说明试剂盒内各组分的名称、数量、内容物、比例或浓度等信息,阴性/阳性对照品(或质控品)可能含有生物源性物质的组分,应说明其生物学来源、活性及其他特性;说明不同批号试剂盒中各组分是否可以互换。
介绍试剂盒的效期稳定性、开瓶稳定性、复溶稳定性、运输稳定性、机载稳定性(如适用)、冻融次数要求等。
EGFR突变基因检测样本一般采用肿瘤部位手术切除样本、活检组织及细胞学样本。临床取材方法主要包括手术、纤维支气管镜下活检、经皮肺穿刺活检、胸水/胸腔镜/淋巴结穿刺活检、支气管内超声引导细针穿刺活检等。无法获取足够肿瘤组织及细胞学样本的晚期肺腺癌患者,可用血液样本进行EGFR突变基因检测。原发灶或转移灶均适合检测。
6.2对外周血样本作详细介绍,包括样本来源、采血要求、采集量、保存方式、样本处理方式、采集管要求、防腐剂、抗凝剂、保护剂及相关试剂材料等。
详细说明实验操作的各个步骤,包括:
阳性判断值的描述包括基线的确定方法和对阈值循环数(Ct)的要求。除Ct值要求外,建议结合是否出现典型S形曲线对结果进行判断。
结合阳性对照、阴性对照以及样本管中靶基因和内标的检测结果(Ct值),对所有可能出现的结果组合及相应的解释进行详述。如存在检测灰区,应对灰区结果的处理方式一并详述。
10.1本试剂盒的检测结果仅供临床参考,对患者个体化治疗的选择应结合其症状/体征、病史、其他实验室检查及治疗反应等情况综合考虑。
详述以下性能指标:
如果经验证发现某些序列与靶序列的交叉反应出现阳性结果,则应该对存在交叉反应的核酸序列及浓度进行验证并在产品说明书中表明这种假阳性发生的可能,做出相关的提示。
如果经验证发现某些序列与靶序列的交叉反应出现阳性结果,则应该对存在交叉反应的核酸序列及浓度进行验证并在产品说明书中表明这种假阳性发生的可能,做出相关的提示。
应至少包括以下内容:
国家食品药品监督管理总局医疗器械技术审评中心
Nat Commun:科学家发现预测疾病的重要线索!基因型预测表型可没你想的那么简单!
2018年3月9日讯 /基因宝jiyinbao.com /——你掌握的信息越多,你就越可能更好地预测接下来会发生什么。临床医生和卫生研究人员也常在寻找基因突变以预测胎儿是否有出生缺陷的风险,或者一个人是否有患某种疾病的风险,但是这些预测通常都不准确。来自卡尔加里大学的研究人员现在发现了一种重要的因素,改变了我们对基因突变(基因型)与它们在人身上的表现(表型)之间关系的认知,这也许会在将来某一天帮着我们提高预测的准确率。
图片来源:Cumming医学院
“这项工作的意义就是它帮助我们明白为什么同样携带一个基因突变,有些人患病而有些人却很健康。”研究第一作者、Benedikt Hallgrimsson实验室的博士后研究员Rebecca Green说道。“这在唇腭裂中很常见,两个携带相同基因突变的孩子,可能一个患唇腭裂,而另一个不会。”
为了更深入探索原因,研究人员在基因表达水平进行了研究。长期以来人们都认为基因表达改变会导致这些基因决定的特征改变。很多特征的改变(如面部形状、身高或者血压)都是基因表达水平的差异决定。
通过使用小鼠胚胎,他们创造了一系列基因突变,可以逐渐降低一个叫做Fgf8的基因的表达水平,而这个基因对面部正常发育至关重要。他们使这个基因的表达水平从100%逐渐降低到20%。然后他们记录了基因表达水平的改变和面部的改变程度之间的关系,结果发现这种关系既不是成比例的,也不是常数,而是非线性的。
“我们的结果显示就算这个基因表达水平降低50%,你的脸都是完全正常的。,但是进一步降低的话,也并不意味着缺陷增加——你可能有多种结果:从完全典型的脸到几乎没有脸。” Cumming医学院细胞生物学和解剖学系主任 Hallgrimsson博士说道。“这些效应导致了基因型和表型之间非线性的变化。如果你不知道这种关系,你就无法根据基因型预测表型。”
这些研究结果发表在《Nature Communications》上。
“这是从基因型预测疾病很关键的一点。” Hallgrimsson博士说道。“它增进了我们对基因如何与每个人相互作用的了解,也告诉了我们可能产生多么具有差异性的结果。”
Hallgrimsson推测如果研究人员探索大多数真正重要的基因,可能他们也会发现相似的结果。
“从基因型预测表型的科学并没有人们认为的那么先进。” Hallgrimsson博士说道。“我们正在使用的预测工具需要把非线性性考虑进去,以修正并提高使用基因组学信息预测表型的算法。这种优化对预测疾病风险至关重要。”
这项工作对进化生物学也有重要意义。所有的生物体都携带相同数量的基因突变。一个物种为了生存,它必须要能够耐受一定的基因突变并成功发育繁殖。这项研究表明发育中的非线性性是这种现象的主要原因。(生物谷Bioon.com)
参考资料:
Rebecca M. Green et al. Developmental nonlinearity drives phenotypic robustness, Nature Communications (2017). DOI: 10.1038/s41467-017-02037-7