基因时代
就找基因君

PNAS:重磅!利用分子乐高产生更优的CRISPR基因编辑工具

基因君

PNAS:重磅!利用分子乐高产生更优的CRISPR基因编辑工具

2016年12月13日/生物谷BIOON/—在一项新的研究中,来自加拿大西安大略大学的研究人员利用分子乐高(molecular-Lego),将一种工程酶加入到革命性的新的基因编辑工具CRISPR/Cas9中。他们的研究表明在靶向基因组中的基因中,加入这种酶会使得基因编辑更加高效和潜在地更具特异性。相关研究结果于2016年12月8日在线发表在PNAS期刊上,论文标题为“Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease”。

科学界充斥着CRISPR给人类基因编辑带来的希望:它为利用基因疗法治疗囊性纤维化和白血病等疾病打开大门。

比如,在囊性纤维化中,绝大多数病人存在一种导致这种疾病的基因突变。如果利用CRISPR将这种突变从基因组中切除的话,那么这种疾病可能潜在地被治愈。

论文通信作者、西安大略大学舒力克医学与牙科学院副教授David Edgell说,“CRISPR的问题在于它会切割DNA,但是随后DNA修复会移除这种切口,并且将它粘贴在一起。这意味着它再生这个CRISPR试图靶向的位点,从而产生一种无效的循环。我们加入这种工程酶的新颖性在于它阻止这种再生发生。”

研究人员证实构建一种被称作TevCas9的酶会使得DNA修复更难再生这个切割位点,其中TevCas9是在两个位点而不是在单个位点切割DNA。他们是通过将一种被称作I-Tevl的酶加入到核酸酶Cas9上而构建出TevCas9的。在基因编辑工具CRISPR/Cas9中,Cas9是一种典型的用于切割DNA的酶。

这项研究也表明加入I-Tevl有望更加特异性地靶向基因,而且更不可能在基因组上产生脱靶效应,其中脱靶效应是任何潜在治疗应用的一个重大的问题。

论文共同作者、西安大略大学舒力克医学与牙科学院副教授Caroline Schild-Poulter说,“因为存在两个切割位点,所以相比于仅仅一个位点,这两个位点更不可能在基因组中随机地发生。这仍然有待进行测试,但是这是希望和期待。”(生物谷 Bioon.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP

Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease

Jason M. Wolfs, Thomas A. Hamiltona, Jeremy T. Lanta, Marcon Laforeta, Jenny Zhanga, Louisa M. Salemia,b, Gregory B. Gloora, Caroline Schild-Poultera,b, and David R. Edgell

doi:10.1073/pnas.1616343114

一个特定基因可解释多种疾病

基因君

一个特定基因可解释多种疾病

2016年12月13日讯 /生物谷BIOON/ –FADS1基因是脂肪酸去饱和酶基因家族的一员,该基因的表达产物能够通过引入双键调节不饱和脂肪酸的合成,最近一项研究发现该基因的变异影响着许多疾病的风险。不同人合成omega-3和omega-6等多不饱和脂肪酸的能力存在不同,这种合成能力的差别影响着代谢疾病,炎症疾病和多种癌症的发生风险。来自瑞典乌普萨拉大学的研究人员在国际学术期刊Nucleic Acids Research上对上述结果进行了详细证实。

“通过一些实验研究,我们现在准确知道基因功能区域发生了哪个突变,直接参与FADS1的表达调节。”乌普萨拉大学的Gang Pan这样说道。

在这项新研究中,研究人员发现控制FADS1的基因区域在600万年前就已经存在,现在只存在于人类和黑猩猩体内,其他物种体内并不存在。omega-3和omega-6的合成增加有助于脑发育,这个事件可能推动了人类的进化。30万年前发生的一个突变进一步促进了该基因的表达产物合成omega-3和omega-6脂肪酸的能力。这个突变形成了一个进化优势,导致形成了一个活跃表达的FADS1变异,这个变异基因逐渐成为世界上一个常见的变异。

在历史上,人们主要从鱼类和蔬菜中获得omega-3,从肉类和蛋类中获得omega-6。“现在人类寿命变长,饮食也发生了根本变化,西方世界的现代食物中有极端过量的omega-6——这在历史其他时期可能是一个优势,但是现在反过来导致许多疾病的风险增加。”Gang Pan这样说道。

FADS1基因的变异影响LDL-和HDL-胆固醇,其他一些重要的脂肪酸,血糖水平以及代谢综合征的发生,也会影响我们对降血脂药物的应答。除此之外还会影响过敏,炎症性疾病以及结肠癌等几种癌症的发生风险。(基因宝jiyinbao.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP.

DOI: 10.1093/nar/gkw1186 

PATZ1 down-regulates FADS1 by binding to rs174557 and is opposed by SP1/SREBP1c

Gang Pan, Adam Ameur, Stefan Enroth, Madhusudhan Bysani, Helena Nord, Marco Cavalli, Magnus Essand, Ulf Gyllensten and Claes Wadelius

相关会议推荐

一个特定基因可解释多种疾病

2017 疾病特异性模型研究及应用研讨会

会议时间:2017.03.03-2017.03.04     会议地点:上海

会议详情: http://www.bioon.com/z/2017iPSCs/

中国学者发现CASC5基因对人类大脑变化发挥重要作用

基因君

中国学者发现CASC5基因对人类大脑变化发挥重要作用

近日,中国科学院昆明动物研究所宿兵实验室在人类大脑进化遗传机制研究中取得新进展,研究成果发表在期刊《人类遗传学》上。

人类起源过程中大脑容量的急剧扩增一直是灵长类脑进化研究关注的核心问题。以前的研究主要是比较人类与非人灵长类脑容量的差异及其遗传调控机制,对近期人类进化过程中群体水平脑容量变化的遗传分析少有涉及。

昆明动物所宿兵实验室的助理研究员石磊、硕士研究生虎恩志等在近期的研究中发现,脑容量调控基因CASC5在现代人的起源过程中积累了8个氨基酸突变,这些突变在非人灵长类和古人类(尼安德特人和丹尼索瓦人)中均不存在,是现代人特有的变异位点。其中,2个突变位点在现代人中已经固定下来,而其他6个位点在人群中仍然是多态的。更有意思的是,有4个多态位点在东亚人群中呈现高频率,但在欧洲和非洲人群中频率很低。进一步的分子进化分析表明,CASC5基因在东亚人群中受到达尔文正选择的作用,但在非洲和欧洲群体中没有发现选择信号。

遗传关联分析显示这些东亚人群富集的位点在汉族人群中与大脑灰质体积显着相关,突变型等位基因的携带者具有更大的灰质体积。该研究结果提示,在近期人类大脑进化过程中,CASC5基因对现代人大脑形态结构的变化可能发挥重要作用。(生物谷Bioon.com)

PNAS:重磅!利用分子乐高产生更优的CRISPR基因编辑工具

基因君

PNAS:重磅!利用分子乐高产生更优的CRISPR基因编辑工具

2016年12月13日/生物谷BIOON/—在一项新的研究中,来自加拿大西安大略大学的研究人员利用分子乐高(molecular-Lego),将一种工程酶加入到革命性的新的基因编辑工具CRISPR/Cas9中。他们的研究表明在靶向基因组中的基因中,加入这种酶会使得基因编辑更加高效和潜在地更具特异性。相关研究结果于2016年12月8日在线发表在PNAS期刊上,论文标题为“Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease”。

科学界充斥着CRISPR给人类基因编辑带来的希望:它为利用基因疗法治疗囊性纤维化和白血病等疾病打开大门。

比如,在囊性纤维化中,绝大多数病人存在一种导致这种疾病的基因突变。如果利用CRISPR将这种突变从基因组中切除的话,那么这种疾病可能潜在地被治愈。

论文通信作者、西安大略大学舒力克医学与牙科学院副教授David Edgell说,“CRISPR的问题在于它会切割DNA,但是随后DNA修复会移除这种切口,并且将它粘贴在一起。这意味着它再生这个CRISPR试图靶向的位点,从而产生一种无效的循环。我们加入这种工程酶的新颖性在于它阻止这种再生发生。”

研究人员证实构建一种被称作TevCas9的酶会使得DNA修复更难再生这个切割位点,其中TevCas9是在两个位点而不是在单个位点切割DNA。他们是通过将一种被称作I-Tevl的酶加入到核酸酶Cas9上而构建出TevCas9的。在基因编辑工具CRISPR/Cas9中,Cas9是一种典型的用于切割DNA的酶。

这项研究也表明加入I-Tevl有望更加特异性地靶向基因,而且更不可能在基因组上产生脱靶效应,其中脱靶效应是任何潜在治疗应用的一个重大的问题。

论文共同作者、西安大略大学舒力克医学与牙科学院副教授Caroline Schild-Poulter说,“因为存在两个切割位点,所以相比于仅仅一个位点,这两个位点更不可能在基因组中随机地发生。这仍然有待进行测试,但是这是希望和期待。”(生物谷 Bioon.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP

Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease

Jason M. Wolfs, Thomas A. Hamiltona, Jeremy T. Lanta, Marcon Laforeta, Jenny Zhanga, Louisa M. Salemia,b, Gregory B. Gloora, Caroline Schild-Poultera,b, and David R. Edgell

doi:10.1073/pnas.1616343114

Environ Pollut:令人意外!噬菌体携带抗生素耐药性基因

基因君

Environ Pollut:令人意外!噬菌体携带抗生素耐药性基因

2016年12月12日/生物谷BIOON/—根据一项新的研究,来自多种环境的病毒组携带着抗生素耐药性基因。这一结果提示着噬菌体—感染细菌的病毒—可能在转移让细菌产生耐药性的基因中发挥着作用。相关研究结果将发表在2017年1月那期Environmental Pollution期刊上,论文标题为“Exploring the contribution of bacteriophages to antibiotic resistance”。

来自西班牙赫罗纳大学的研究人员扫描了来自未经净化的污水、人粪便、猪粪便、淡水环境和海洋环境的病毒组,以便寻找抗生素耐药性存在的证据。他们发现这样的基因存在于所有分析的病毒组中,尽管它们的丰度存在差异。

在人类相关的病毒组中,研究人员发现相对较少的耐药性基因,它们中的大多数与四环素耐药性相关联。他们在其他的样品中观察到更加丰富的抗生素耐药性基因。在猪粪便病毒组中发现的绝大多数耐药性基因是编码β-内酰胺酶的基因,而未经净化的污水、淡水和海洋样品携带许多各种不同的耐药性基因,包括那些赋予对至少三种不同的抗生素产生多药耐药性的基因。

论文通信作者、赫罗纳大学加泰罗尼亚水研究所科学家José Balcázar写道,“我们的研究表明环境是一个巨大的噬菌体库,它们中的大多数携带着抗生素耐药性基因。”

因存在细菌DNA污染,Balcázar和同事们排除了他们的病毒组数据中的一些数据。Balcázar也强调应更加深入地研究他的团队在人类相关的病毒组中发现的较低数量的耐药性基因。他写道,“还需更多数量的样品来证实这一观察结果。”

Balcázar说,噬菌体在细菌之间转移耐药性基因的机制和噬菌体在基因转移中发挥多大重要的作用还需在未来的研究中加以阐明。(生物谷 Bioon.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷app

Exploring the contribution of bacteriophages to antibiotic resistance

Itziar Lekunberri, Jèssica Subirats, Carles M. Borrego, José Luis Balcázar

doi:10.1016/j.envpol.2016.11.059

医学领域是否为临床CRISPR基因编辑的到来做好了准备?

基因君

医学领域是否为临床CRISPR基因编辑的到来做好了准备?

2016年12月13日 讯 /生物谷BIOON/ –CRISPR-Cas9能够以多个重要的方式来潜在地转化医学,首先该技术能够帮助科学家们对多种哺乳动物机体中的基因进行“裁剪”来产生用于研究人类健康和疾病发生的模型,此前科学家仅能够在小鼠机体中使用该技术,但基因编辑技术使得他们能够更加精准地修饰几乎所有哺乳动物机体的基因组。

由于猪的心脏或者猴子的大脑更类似于人类机体中相应的器官,这或许就能够帮助研究者通过研究来理解心脏病和多种精神疾病发生背后的遗传基础和分子机制,但这往往也是具有一定的争议性,因为很多人反对对灵长类动物进行实验操作。

基因编辑影响医学进展的另一种方式就是通过促进对人类细胞生理学和病理学过程的研究,利用基因编辑技术在体外准确地操作人类细胞的基因组,就能够帮助我们鉴别出参与参与正常人类生理学过程以及多种人类疾病发生的关键基因,笔者在他最近新出版的一本名为“Redesigning Life: How Genome Editing Will Transform the World”的书中探讨了CRISPR-Cas9基因编辑技术的应用和转化。

当然一项让科学家们非常感兴趣的发展就是基因编辑技术和干细胞技术的合集,多潜能干细胞(pluripotent stem cells)有潜力发育为任何类型的细胞,其能够以胚胎干细胞(ES)的方式从人类胚胎中分离出来,或者通过激活成体细胞的特殊基因来产生诱导多能干细胞(iPSCs)。

医学领域是否为临床CRISPR基因编辑的到来做好了准备?

近日有科学家诱导胚胎干细胞和诱导多能干细胞使其发育成为类器官,类器官是一种类似机体组织的结构,比如类似于机体眼睛、肠道、肾脏、胰腺、前列腺、肺部、乳腺,甚至大脑等组织,而基因编辑技术就使得科学家们对类器官操作成为了可能,这就能够帮助研究者更加深入地理解人类胚胎发育的奥秘,并且也能够帮助研究者开发研究疾病的模型以及药物筛选平台。

来自威斯康星大学麦迪逊分校的研究人员Su-Chun Zhang今年夏天就在一份声明中指出,人类干细胞和基因编辑技术联姻将能够给科学界带来革命性的变革;而来自加利福尼亚大学的科学界Pablo Ross带领的研究团队通过研究则发现,利用CRISPR-Cas9技术就能够对猪胚胎进行编辑从而使猪长出胰腺。将人类诱导多能干细胞注入胚胎中就能够促进这种初步人类胰腺组织的生长,Ross告诉BBC,我们希望这种猪的胚胎能够正常发育,但胰腺几乎完全由人类细胞产生,而且其也能够很好地应用于患者的胰腺移植。

医学领域是否为临床CRISPR基因编辑的到来做好了准备?

对干细胞进行工程化操作来产生能够用作器官移植的人类器官是基因编辑的一个潜在方向,另外一个方向就是利用该技术来纠正隐藏在多种人类疾病背后的遗传缺失;近日就有研究表明,利用基因编辑技术就能够修复编码肌营养不良蛋白和亨廷顿蛋白基因的缺失,而这两种蛋白往往能够诱发杜氏肌营养不良和亨廷顿氏症;基于能够对动物进行成功研究和试验,美国监管机构就为临床试验亮了绿灯,鼓励科学家们利用基因编辑技术来治疗癌症,同时科学家们也考虑利用基于CRISPR的疗法来治疗一系列的遗传性失明。

目前部分CRISPR应用进入到临床仍然存在一定的争议,当然就有科学家们对于基因疗法的潜在风险展开了激烈地辩论,美国西北大学的生物论理学家Laurie Zoloth近日就告诉Nature杂志,任何在人类中第一次使用的方法我们都必须格外小心,当然科学家们非常关心的问题就是是否基因编辑能够足够准确地靶向作用基因缺失位置,同时还不会产生对基因组其它位置的不利脱靶效应,是否引入人类细胞,比如将诱导多能干细胞引入到猪体内,能够影响宿主的大脑发育或者产生其它副作用,抑或者是在受体动物体内产生脱靶效应;来自斯坦福大学的研究者Mildred Cho则认为,对动物的研究截止到目前为止仅仅需要进行临床研究即可,当然通常情况下我们都很想为了我们的信仰大干一场。(基因宝jiyinbao.com)

本文系生物谷原创编译整理,欢迎转发,转载需授权!点击  获取授权 。更多资讯请下 载生物谷APP.

参考资料:

【1】Using CRISPR to Edit Genes in Induced Pluripotent Stem Cells

【2】US bid to grow human organs for transplant inside pigs

【3】Duchenne muscular dystrophy: CRISPR/Cas9 treatment

Cell Research    doi:10.1038/cr.2016.28

【4】Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9

Hum. Mol. Genet.   doi: 10.1093/hmg/ddw286

【5】First CRISPR clinical trial gets green light from US panel

【6】Is Medicine Ready for Clinical CRISPR?

【7】Redesigning Life:How genome editing will transform the world

AJHG发表上海交通大学张健课题组肿瘤基因组变构方法精准识别肿瘤全新靶标的成果

基因君

国际著名学术杂志American Journal of Human Genetics (AJHG)在2017年第一期在线发表了上海交通大学医学院细胞分化与凋亡重点实验室张健课题组在变构领域的最新成果,报告其发展了通过大规模肿瘤基因组在蛋白结构上的变构映射精准识别各类型肿瘤全新靶标的方法,并利用该方法发现非小细胞肺癌的全新靶标PDE10A。

随着精准医学的发展,识别各种肿瘤亚型所特有的全新靶标已经成为靶向药物开发的重要前提。随着临床大量各类肿瘤病人基因组数据的不断累积,解析肿瘤基因组高内涵数据,识别与各亚型肿瘤有关或者驱动肿瘤发生的基因(Driver genes)及其表达蛋白,继而利用现有药物或发展全新小分子靶向该蛋白靶标,为该类型患者提供个体化治疗已成为了精准医学时代药物发现的全新趋势。

变构(Allostery)指在远离蛋白底物位点的变构位点(Allosteric Site)结合调节小分子,从而调节蛋白底物位点功能的现象,是生命体中广泛存在且十分重要的一种调节机制。在本工作中,张健等解析了33类肿瘤的7000例临床病人基因组,将识别的47,000多个突变数据映射至已发现的蛋白结构上,发现这些肿瘤基因组样本中的突变主要富集于蛋白的变构位点以及底物位点。基于这个现象,他们设计了根据映射在变构位点的突变分布来识别针对不同肿瘤新靶标的方法AlloDriver。利用这个方法,他们发现了非小细胞肺癌的全新靶标PDE10A (注:PDE10A是一个已知的用于治疗精神类疾病的药物靶点),并通过化学生物学方法证明PDE10A已上市的药物可以有效杀伤非小细胞肺癌细胞株,为非小细胞肺癌的治疗提供了新的途径。

AJHG发表上海交通大学张健课题组肿瘤基因组变构方法精准识别肿瘤全新靶标的成果

图1. 研究工作流程

张健课题组自2009年起长期致力于变构在药物发现领域的研究,课题组先后在变构调节机制阐明、变构药物设计方法发展及变构小分子发现方面做出系列工作,以通讯作者在Chem Rev, Chem Soc Rev, Nucleic Acids Res, Bioinformatics, Structure, ACS Med Chem Lett等多个重要学术期刊上发表了一系列变构研究成果。本论文的第一作者为张健课题组的沈倩诚博士以及美国哈佛医学院的程飞雄博士,论文的共同通讯作者还包括美国范德堡大学的赵中明教授。此外,上海交通大学的陈国强教授,华东师范大学的刘明耀教授以及卢伟强博士对论文亦有贡献。

文章链接:http://dx.doi.org/10.1016/j.ajhg.2016.09.020

(生物谷Bioon.com)

帕金森基因疗法1期临床试验数据惊人,Voyager股票暴涨!

基因君

帕金森基因疗法1期临床试验数据惊人,Voyager股票暴涨!
 
2016年12月12日讯 /生物谷BIOON/ –Voyager Therapeutics的股票在其帕金森疾病基因治疗的早期临床试验数据公布之后1小时暴涨35%。他们这项手术介导的基因治疗目标是为了让晚期帕金森患者对左旋多巴有更好的反应,它是一种可在帕金森早期有效控制疾病进展的老药。
患者刚诊断出帕金森时,左旋多巴可以有效控制病情,但是如果病情加重导致更多神经细胞死亡,这种药物治疗就显得捉襟见肘,病人会产生运动失调并发症,目前病情到了这个阶段基本就无法治疗了,这是由于这个阶段的病人已经无法将左旋多巴转化为多巴胺。而Voyager的基因疗法可以通过增加芳香族L氨基酸脱羧酶(AADC,左旋多巴转化为多巴胺的催化剂)的表达来促进这个转化过程。
目前该公司两个五人小组的1b期临床试验数据表明了这个方法的有效性。这个临床实验的主要目标是确定VY-AADC01及其给药方式的安全性,早期数据表明病人可以耐受核磁共振成像(MRI)指导下的给药及基因治疗载体的使用,同时他们也收集了关于AADC活性和对运动功能影响的早期数据。
这些早期疗效数据,尤其是来自高剂量小组的乐观数据是股票上涨的原因。在高剂量组的5个病人中,试验的前6个月里,病人AADC活性提高了56%,左旋多巴的剂量降低了34%,对部分病人12个月的回访数据显示疗效至少持续了12个月。同时治疗6个月和12个月时的评估数据也显示VY-AADC01改善了病人治疗后一年内的病情。
如果Voyager表明VY-AADC01可以在更多的病人身上显示出这种疗效,并将有效时间延长超过一年,那么VY-AADC01就可以仅通过一次治疗就将病人的病情恢复到可以治疗的水平,当然要实现这个目标Voyager还有很长的路要走。
目前,公司的焦点在于招募下一步剂量优化实验的病人(第三组)并继续收集目前治疗的病人数据。Voyager希望在2017年初完成病人的招募,并随时更新前期已经进行治疗的十个病人的数据。(基因宝jiyinbao.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷app

Development:利用改进的CRISPR基因编辑平台研究人类发育

基因君

Development:利用改进的CRISPR基因编辑平台研究人类发育

2016年12月11日/生物谷BIOON/—在一项新的研究中,来自英国韦尔科姆基金会桑格研究所和剑桥大学的研究人员构建出一种更加高效的和可控的CRISPR基因组编辑平台:sOPTiKO。他们描述了这种免费获得的单步骤系统如何在体内每个细胞和每个发育步骤中发挥作用。这种新方法将有助科学家们开展发育生物学、组织再生和癌症研究。相关研究结果发表在2016年12月1日那期Development期刊上,论文标题为“Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs”。

两种互补的方法被开发出来。sOPiTKO是一种通过破坏DNA关闭基因的敲除系统。sOPTiKD一种通过破坏RNA沉默基因作用的敲降系统。利用这两种方法,科学家们能够可诱导性地在任何一种细胞类型中和在细胞—从干细胞到完全分化的成体细胞—的任何发育阶段上关闭或沉默基因。这将允许全世界的科学家们快速地和准确地研究当这些细胞发育成肝脏、皮肤或心脏等组织时基因在这种变化中所发挥的作用,并且发现这如何促进健康和疾病产生。

人体含有大约37万亿个细胞,但是人类基因组仅含有大约2万个基因。因此,为了产生体内的每个组织和细胞类型,不同基因组合必须在器官或组织发育的不同时刻发挥作用。在细胞发育的特定时刻能够关闭基因将允许人们研究它们所起的作用。

论文作者、剑桥大学韦尔科姆基金会医学研究委员会剑桥干细胞研究所教授Ludovic Vallier说,“当一种细胞由成为干细胞发展为成为一种完全分化的成体细胞时,它当中的基因呈现出不同的作用。在之前,如果我们敲除一个基因,我们仅能够在第一步观察这会产生何种影响。通过允许这个基因在细胞发育期间发挥作用,然后在较晚的发育步骤利用sOPTiKO对它进行基因敲除,我们能够精确地研究它在那个阶段发挥的作用。”

sOPTiKO和sOPTIKD方法允许科学家们一次沉默一个以上基因的活性,因此如今就有可能通过一次敲降相关基因的整个家族的活性来研究它们的作用。

此外,这种免费获得的系统允许更加快速地和更加廉价地开展实验。sOPTiKO是高度灵活的,因此它能够用于体内的每个组织中而无需每次构建一种新的系统。sOPiTKD允许显著地提高效率:它能够用于一次敲降一个以上的基因。在之前,为了沉默三个基因的活性,研究人员不得不敲降一个基因,培养细胞系,然后对第二个基因而言,重复前面的步骤,最后对第三个基因而言,再次重复一次。如今,它能够仅需一个步骤就可实现这一点,从而将需要9个月的过程降低到仅需一到两个月的时间。

论文共同第一作者Alessandro Bertero博士说,“相对于其他的CRISPR编辑系统,使用OPTiKO/sOPTIKD的两个关键优势在于它是真正可诱导的,而且能够在几乎任何细胞类型中发挥作用。在过去,我们仅能够研究一种特定组织中的一个基因的功能。如今,我们能够同时敲除具有不同功能的多种细胞类型中的同一个基因。”(生物谷 Bioon.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷app

Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs

Alessandro Bertero, Matthias Pawlowski, Daniel Ortmann, Kirsten Snijders, Loukia Yiangou, Miguel Cardoso de Brito, Stephanie Brown, William G. Bernard, James D. Cooper, Elisa Giacomelli, Laure Gambardella, Nicholas R. F. Hannan, Dharini Iyer, Fotios Sampaziotis, Felipe Serrano, Mariëlle C. F. Zonneveld, Sanjay Sinha, Mark Kotter, Ludovic Vallier

doi:10.1242/dev.138081

Plant Cell Physiol:新方法让CRISPR/Cas9高效地敲除拟南芥中的靶基因

基因君

Plant Cell Physiol:新方法让CRISPR/Cas9高效地敲除拟南芥中的靶基因

2016年12月11日/生物谷BIOON/—在一项新的研究中,来自日本名古屋大学转化生物分子研究所的两名生物学家Hiroki Tsutsui和Tetsuya Higashiyama开发出一种新的载体(一种转运遗传信息的载体),从而允许高效地和可遗传地敲除模式植物拟南芥中的靶基因。相关研究结果近期发表在Plant and Cell Physiology期刊上,论文标题为“pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana”。

基因组工程涉及对宿主基因组的一部分进行特异性修饰,即移除、添加和改变宿主基因组中的DNA序列片段。迄今为止,CRISPR/Cas9系统因其简易性、多功能性和高效性而成为一种最为流行的基因操纵方法之一。

然而,对拟南芥而言,CRISPR/Cas9的突变诱导效率在某种程度上一直都比较低。这是因为诱导基因突变的Cas9是在细胞的发育阶段后期被激活的。因此,为了获得所需的靶基因被敲除的植物物种,人们就需要大量的时间、精力和植物物种。

CRISPR/Cas9系统由两个关键的分子组成:一种被称作向导RNA(gRNA)的RNA片段和一种被称作Cas9的核酸酶。Cas9是一种分子剪刀,能够在基因组特定位点上切割DNA的双链,这样就能够在该位点上添加或移除DNA序列。另一方面,gRNA是一种事先设计好的位于一种更长的RNA骨架内的RNA片段(大约长20个碱基)。这种RNA骨架结合到DNA上,这样这种事先设计好的RNA序列引导Cas9到基因组的特定部分,因此Cas9就能够在靶位点上进行切割。

Tsutsui说,“通过使用RPS5A基因—在植物细胞的胚胎发育初期表达—的启动子,我们能够诱导Cas9高效地敲除植物卵细胞中的基因。这个RPS5A启动子在卵细胞中是有活性的,因此我们决定将这个分子工具称为pKAMA-ITACHI Red(pKIR)载体。相对于在植物中经常使用的35S启动子,该分子工具能够高效地编辑植物基因组。”

Higashiyama说,“通过能够高效地敲除拟南芥中的靶基因,我们将这种工具视为一种阐明植物基因功能的有前途的方法。我们希望我们能够利用这种方法进行欧洲油菜等作物基因组编辑,从而加快它们的生长和培育出多种植物品种。”

这种CRISPR/Cas9系统通过敲除一种特定的基因来研究它的功能。在拟南芥中,由于Cas9是在细胞的发育阶段后期表达的,因此基因敲除的程度依据组织的不同而存在差异。因此,这种基因组突变效率相对较低。

比如,当利用植物中一种经常使用的35S启动子在拟南芥中表达Cas9时,尽管在叶子中观察到大量的基因敲除,但是在花朵中仅检测到少量基因敲除。这提示着靶基因的敲除突变效率在花朵的生殖细胞中相对较低。因此,这种敲除突变很难传递到下一代的子细胞中。

为了解决这个问题,Higashiyama团队决定在植物卵细胞和胚胎发育早期期间的细胞中表达Cas9以便提高靶基因敲除效率。

Higashiyama团队首先试图敲除PDS3基因,其中已知该基因负责合成植物中的叶绿素。若缺乏叶绿素,植物变成一种白化物种。通过利用pKIR表达Cas9,Tsutsui成功地观察到PDS3基因被敲除,这可通过产生一种白化植物加以证明。

Tsutsui也研究了当PDS3基因被敲除时,它对叶绿素在花茎中的合成数量的影响。当利用35S启动子表达Cas9时,叶绿素数量与野生型中观察到的数量仅有微量的差别。另一方面,当利用pKIR诱导Cas9表达时,叶绿素数量显著下降,这提示着该基因被高效地敲除。

Higashiyama团队也发现pKIR载体成功地敲除拟南芥中的其他基因,如AGAMOUS、DUO1和ADH1。

为了容易地鉴定出携带CRISPR/Cas9基因的植物物种,含有Cas9的种子利用红色荧光加以标记。

Higashiyama团队发现利用pKIR载体表达Cas9对拟南芥基因组进行高效编辑的方法能够敲除早期发育阶段期间的细胞中的基因,并且诱导能够传递到下一代的子细胞中的突变。

Tsutsui说,“这种pKIR方法允许我们研究可能具有重叠功能的基因簇。在此之前,我们不得不通过让现存的突变株进行杂交产生多种基因敲除植物来研究重叠的基因功能,这非常耗费时间。利用我们的相对低成本的方法,我们能够快速地获得突变株,从而应当能够研究未被鉴定出的基因簇的功能。”(生物谷 Bioon.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP

pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana

Hiroki Tsutsui and Tetsuya Higashiyama

doi:10.1093/pcp/pcw191

健康一生

apasstour 医健游测序宝