基因时代
就找基因君

2016年基因检测行业分析

基因君

如果是基因测序产业上游的公司,产品销售的目标客户广泛,横跨科研、医疗、商检领域,产品包括测序仪、DNA提取试剂盒、捕获试剂盒/多重子扩增试剂盒、建库试剂盒、上机测序试剂盒,其中测序仪、上机测序试剂盒两者是绑定的,DNA提取试剂盒、捕获试剂盒/多重子扩增试剂盒、建库试剂盒是可以用第三方的产品,国内企业可以从这三个方向切入,但是试剂盒中的最关键的工具酶以及分离材料等都还是以进口产品为主,壁垒较高,如果能实现这两个产品的进口替代,说明企业具有较强的技术实力。

2016年基因检测行业分析

目前全国涉及基因检测概念的公司有200余家,按照业务范围划分,这些公司可以分为:

①最上游的基因检测仪器开发企业(测序仪、芯片扫描仪、PCR设备);

②提供样本处理试剂和耗材的中上游企业(建库试剂盒、检测试剂盒、工具酶、基因芯片);

③提供第三方基因检测服务的中游企业;

④提供测序数据存储、分析和出具报告的下游企业;

⑤还有将这三部分整合起来提供CRO服务的商业公司

当然如果公司研发实力和经济实力允许,大部分公司会选择向上下游产业链延伸,进一步提升自己的盈利能力。

按照基因检测公司的服务内容,主要可以分为四类:科研服务、第三方临床基因检测服务、直接面向个人的检测服务、非医疗基因检测服务(例如食品、环境、刑侦等方面的应用)。

我们今天的分享的内容重点关注的还是基因检测在医学诊断上的运用,这个领域受众广,附加值高,市场空间大。包括以下这些方面:

以科研的名义为患者提供医学诊断服务:医生在其中起主导作用,推荐有需要的患者去做基因检测,医生在其中所获得的好处是得到用药指导依据、科研数据、获得销售提成,这是当前肿瘤基因测序普遍采用的手段,因为目前国内只有NIPT获批临床的肿瘤高通量检测试剂盒,其他只能以科研的形式变相的进行医学诊断从而获取收益。纯科研基因检测市场在百亿级别。

批准为医院提供检测外包服务的第三方独立医学检验实验室:这些机构都能开展分子诊断服务(需通过临检中心的PCR实验室认证),例如QPCR、ddPCR、基因芯片等,但是高通量测序在临床检测上的应用当前受到限制,只有在试点名单上的机构才能出具正式的临检报告,目前出台了第一批四个领域的试点名单,分别是遗传病诊断、产前筛查与诊断、植入前胚胎遗传诊断肿瘤基因测序,试点单位名单由卫计委医政医管局和妇幼司共同制定。临床基因检测的市场空间在千亿级别。

商业化B2C基因检测:提供面向个人基因检测服务的商业公司一般提供的是非诊断性基因检测,而我国有许多直接面向个人的基因检测商业机构,业务范围甚至包括疾病风险、天赋基因、个性特征分析等一系列基因分析服务,未来有加强监管和整合的压力。市场空间在十亿级别。

非医疗基因检测服务:包括食品、环境微生物、刑侦检测、检验检疫等方面,属于碎片化市场,涉及领域多,空间在百亿级别。

一、基因检测行业的监管情况和趋势分析

我国基因产业处在市场兴起的初期阶段,监管制度还十分不完善,给人的感觉十分混乱。2014年以前,我国基因测序行业处于无监管状态;2014年2月,CFDA和卫计委叫停所有基因测序业务,对行业进行集中整顿;2014年3月,卫计委发布《关于开展高通量基因检测技术临床应用试点单位申报工作的通知》,通知要求已经开展高通量基因测序技术,且符合申报规定条件的医疗机构可以申请试点,同时明确申请试点的基因测序项目。2014年12月,卫计委医政医管局发布遗传病诊断、产前筛查与诊断、植入前胚胎遗传学诊断这三个专业的第一批基因测序临床试点名单;随后2015年1月,卫计委妇幼司正式批准108家医疗服务机构开展NIPT高通量测序技术临床试点,并审核通过13家机构开展植入前胚胎遗传诊断临床试点;2015年3月,医政医管局发布了第一批肿瘤诊断与治疗项目高通量测序临床试点名单。此后CFDA批准了几款用于高通量测序的仪器、检测试剂等。

那么基因检测产业到底由谁监管,怎么监管,监管的范围是什么?我们做了以下梳理。

监管部门:整个基因检测行业涉及细分产业众多,包括医院、临检中心、仪器试剂、商业公司、不同的技术平台等,所以涉及的监管部门也较多。

①发改委,从宏观上制定基因检测产业的发展规划:2015年6月,发改委发布《国家发展改革委关于实施新兴产业重大工程包的通知》,其中提到要重点发展基因检测等新型医疗技术,并将在3年时间内建设30个基因检测技术应用示范中心,快速推进基因检测临床应用以及基因检测仪器试剂的国产化;此外地方发改委还参与基因检测项目的定价,例如四川发改委定价无创产前2400元/次。

②卫计委主要是对开展基因检测机构的资质进行审查和规范,具体由三个部分监管,分别是医政医改局、妇幼司、临检中心:医政医改局先后发布遗传病诊断、产前筛查与诊断、植入前胚胎遗传学诊断、肿瘤诊断与治疗这四个专业的第一批基因测序临床试点名单,《药物代谢酶和药物作用靶点基因检测技术指南(试行)》,《肿瘤个体化治疗检测技术指南(试行)》等规范;妇幼司则针对产前检测在医政医改局试点名单的基础上增加了108家医疗服务机构开展NIPT高通量测序技术临床试点,并审核通过13家机构开展植入前胚胎遗传诊断临床试点;临检中心的职责是承担临床检验质量管理与控制工作,运行全国临床检验室间质量评价计划,建立、应用临床检验参考系统,对开展基因检测服务的医学实验室进行评估和验收。

CFDA,对基因检测链上的仪器、试剂、分析软件进行监管,例如EGFR、KRAS、BRAF、C-KIT、CYP2C9、CYP2C19等基因的检测试剂盒、基因芯片等;在高通量测序方面,CFDA先后批准了几款应用于NIPT的测序仪和检测试剂,但是在肿瘤诊断方面,目前还没有高通量测序仪和高通量检测试剂盒获批,试点单位只能以自制试剂(LDTs)的形式开展检测。

技术的监管:基因检测中的技术平台主要有PCR(qPCR、ddPCR)、FISH(荧光原位杂交技术)、基因芯片、测序(一代测序、高通量测序),目前除高通量测序临床服务制订了限制政策,只有试点单位才能出具临检报告,其他基因检测技术,如PCR、FISH、一代测序等的使用没有限制,临检单位只要通过了PCR实验室、病理学实验室认证就可以应用这些技术。

机构的监管:什么样的机构能够开展高通量测序临床服务?除了医政医改局和妇幼司发布的试点高通量基因测序技术临床试点单位名单外,还有卫计委批准的“个体化医学检测试点单位“(业内常简称为LDT试点),首批试点单位包括中南大学湘雅医学检验所、北京博奥医学检验所和中国医科大学第一附属医院这3家机构,个体化医学检测试点的广度和范畴,要高于高通量基因测序试点;此外还有一些地方卫生部门所批准成立的检验所,例如“南京高新精准医学检验所”。但是即使没有这些资质,测序服务机构也能以科研报告的形式提供检测服务(规避医学检验的限制),或者与试点医院成立联合实验室,享受利润分成。这些都折射出当前我国基因行业监管的不成熟,美国临检机构采取的是CLIA/CAP认证的形式,很大可能我国未来也会采取类似的认证资质。

应用领域的监管:目前高通量测序临床上的应用还只能试点应用于遗传病诊断、产前筛查与诊断、植入前胚胎遗传诊断肿瘤诊断与治疗四个专业方向。但是在心血管领域、感染性疾病、肠道微生物宏基因组学等领域,二代测序都有良好的应用前景,当前的临床高通量测序试点只是LDT试点在某个专业方向的具体应用,未来应用领域会越来越广。

仪器试剂的监管:由CFDA进行审批,高通量测序中需要申报的有测序仪(绑定上机试剂)、建库试剂盒、检测试剂盒、分析软件等。NIPT方面,CFDA先后批准了华大基因(BGISEQ-100基于life的Ion Torrent技术、BGISEQ-1000基于华大基因之前收购的Complete Genomics的测序技术)、达安基因(DA Proton基于life的Ion Torrent技术)、博奥生物(BioelectronSeq 4000基于life的Ion Torrent技术)、贝瑞和康(与Illumina合作的NextSeq CN500)的NIPT二代基因测序仪和配套试剂(13、18、21号染色体三体检测试剂盒、上机测序试剂);在肿瘤方面,目前目前还没有高通量测序仪和高通量检测试剂盒获批,试点单位只能以自制试剂(LDTs)的形式开展检测服务。从长远来看,多目标基因panel(几十上百个基因或靶点)高通量检测试剂盒基本没有获批的可能,因为位点突变率很低,很难找到足够的病人开展临床试验,并且检测结果也无法去验证,所以这类试剂盒只能以LTDs的形式在临检实验室使用,无法外售;而少量目标基因(数个基因,少量突变位点)的检测试剂盒可能会被CFDA审批,但是从检测成本来说,少量目标基因的检测成本不会比多目标基因检测低,所以终端价格相差不大,当与多目标基因panel一起进行市场推广的时候,并不具有优势。

总结:当前国内高通量测序在临床上的应用监管还很不成熟,试点名单是名义上具有出具临床检验报告资质的机构,并不是其他机构开展测序服务的限制条件(能以科研的形式开展服务),仪器、试剂的审批也不具备限制性,市场处于洗牌阶段,基因检测公司需要积极进行两手准备,一方面筹备临检资质的申报,积极布局医院终端,一方面着手仪器、试剂的审批。我国未来可能采取和美国类似的CLIA/CAP审批,优先布局医院渠道的有望受益。

案例(美国CLIA认证):在美国,只要通过了CLIA(Clinical Laboratory Improvement Amendments,临床实验室改进法案)认证,第三方实验室就可以根据市场需求,开发出各种新的诊断试剂或服务,即自建项目或者自制试剂(LDTs)。这种检测只能在该实验室内使用,不能外传或者出售给其他任何实验室或者医疗保健机构,从而将风险控制在有限的范围,因而不需要FDA的批准。同时,由于CLIA认证的是实验室,所以并不需要对每个新服务或产品作出审批申请。医院或者病人可以根据自己的需要,选择相应的诊断项目。这个政策给了第三方实验室极大的自由空间,也带来了美国独立实验室的繁荣发展。CLIA 认证最独特的地方在于,实验室自建项目即使在没有FDA批准的情况下,也完全可以在其实验室范围内提供分子检测业务来指导临床。只要是有CLIA执照的实验室,他们自己研发的制剂、技术等也可以合法地进入临床,合理收费。这样做的好处就是:在巨大的医疗需求、和日新月异的新技术面前,所有的CLIA实验室可以跟据市场需求,快速地开发出各种新的诊断应用。同时,美国政府不必对应接不暇的每个新应用做出回应。而病人可以根据自己的需要,即时得到新的诊断服务。同时FDA可以选择FDA认为真正好的诊断方法做进一步认证,并以FDA的名义发布认证,以加速FDA认为好的诊断方法在市场上的应用。申报企业只要通过了CLIA认证,并能保证产品的质量,那么就可以直接应用于临床上。

二、基因测序的行业焦点:重在服务

基因测序重在服务,很难单独依靠商品(检测试剂盒、芯片)来建立优势,这与免疫诊断、化学发光有所不同,因为基因检测归根结底都是DNA一级序列的检测,与二级、三级结构无关,检测原理相对简单,都是通过DNA引物靶定待测序列,然后通过引物延伸来实现序列的测定;相反,样品DNA的提取、建库和捕获的操作倒是比较繁琐,需要专业的技术人员去操作。上游仪器已然被少数几个公司所垄断,中上游的试剂盒产品并不具有很高的技术壁垒(当然如果能在建库环节和捕获环节形成明显技术优势,或者是开发出效率更高的工具酶,也是很有发展前景的),而且高通量基因检测试剂盒的审批存在较大的不确定性(未来可能参照美国CLIA认证的方式,具有资质的检测机构以LTDs自制试剂的形式使用,但是不通过药监局的审批就无法对外销售),医院样本量有限,先进入的肯定会占据诸多优势,NIPT市场已经接近饱和,肿瘤医院的争夺也日趋白热化,所以率先通过服务来抢占市场,这或许是较为稳妥的选择。

医院是否会自行购置测序仪开展高通量测序?如果医院自己测序,那么临检测序机构势必难以竞争,所以思考这个因素是有必要的。这个问题要分开来看,一方面考虑用户的数量和需求,一方面考虑测序成本。以当前高通量测序用的最广泛的是NIPT和肿瘤诊治为例进行分析:

在无创产前诊断领域,我国每年的新生儿在1500万人左右,潜在客户基数大,NIPT能够给出明确的诊断结果和对应的防治措施,而且结果关系到下一代的健康,检测价格在2400元左右,受众广泛;此外,NIPT对测序的精度要求不是特别高(目前主要是针对13、18、21号染色体的三体检查),检测是一个定量的过程,通常采用life ion torrent平台(目前获批的5款仪器里面3家申报的是ion torrent,而且美国已经有机构采用基因芯片来做NIPT),很多大型医院能够自行开展NIPT服务,第三方测序机构的目标市场应该在中小型医院。

但是高通量测序在肿瘤领域的应用就不太一样,我国每年新增肿瘤患者在450万人左右,肿瘤panel测序的价格在8千到2万之间,而且现在做肿瘤panel测序的患者主要目的是获得靶向药物用药指导,靶向药物价格比较昂贵(每个月的用药开销在5万左右),所以目标人群就更加狭窄了;此外,肿瘤检测对测序精度要求比较高,主要针对点突变或者微缺失微重复,对技术平台的要求高,通常采用Illumina Hiseq/next Seq测序仪,仪器设备昂贵,并且开机试剂耗材的花费高(一次开机在15万左右),如果没有足够的样本量,基本上每次开机都是亏损;并且肿瘤数据的分析比较复杂,需要专门的生物信息学人才和数据库,所以在肿瘤领域(在其他病患更少的领域更是如此),我们认为高通量测序还是以第三方临检机构为主,目标市场在大型医院。

三、基因测序公司(NGS)的发展方向:测序是起点而不是终点

如果是基因测序产业上游的公司,产品销售的目标客户广泛,横跨科研、医疗、商检领域,产品包括测序仪、DNA提取试剂盒、捕获试剂盒/多重子扩增试剂盒、建库试剂盒、上机测序试剂盒,其中测序仪、上机测序试剂盒两者是绑定的,DNA提取试剂盒、捕获试剂盒/多重子扩增试剂盒、建库试剂盒是可以用第三方的产品,国内企业可以从这三个方向切入,但是试剂盒中的最关键的工具酶以及分离材料等都还是以进口产品为主,壁垒较高,如果能实现这两个产品的进口替代,说明企业具有较强的技术实力。在科研和商检领域,试剂盒的审批门槛较低,但是需要提供定制化服务;在医疗诊断领域,多基因的捕获试剂盒/多重子扩增试剂盒不大可能通过CFDA审批(前面已经说明原因),只有通过认证的临检实验室才能够以自制试剂使用,因此这部分企业(思路迪、世和基因、燃石生物等)需要做两手准备,筹备建设临检中心,向服务端布局。

测序是起点而不是终点,做中游测序服务的机构,最大的市场还是在医疗诊断领域,除了通过提供服务获得收益外,测序机构最大的潜在优势是能够获得特殊患者的组织样本,并且获得基因数据的积累,这对于药物开发是十分便利的条件。比如说,肿瘤患者在使用某靶向药物后出现耐药性,测序机构通过基因测序发现了新的耐药位点(这是PCR、基因芯片这种检测已知突变位点的技术所不具备的优势),那么这个位点就是下一款靶向药物的开发方向,并且测序机构还可以获得患者的肿瘤组织,以此培养原代细胞株,作为药物开发的细胞模型,这就比其他的药物研发机构拥有更多的先发优势。我个人看好思路迪的发展模式,以自己的测序服务为桥梁,打通患者、医院、CRO企业,测序结果提供用药指导,同时反过来链接下游药物开发和临床试验,形成良好的反馈机制。

案例(美国肿瘤测序公司Foundation Medicine):Foundation Medicine是一家专注于肿瘤高通量测序的商业公司,该公司专有的平台可产生对病人的个体癌症可操作的基因组信息,使医生能够在临床实践中优化治疗,使生物制药公司制定有针对性的癌症疗法更加有效。

该公司以二代基因测序技术为基础,根据癌症基因测序结果给肿瘤患者提供精准的用药指南。该公司的基因测序技术能够发现导至患者罹患癌症的基因突变,让“个体化用药”走进了新领域,让医生能够根据患者的遗传信息进行有针对性的癌症治疗。

Foundation Medicine的服务需要医生订购,患者只需提供10余个病例组织切片或者一管几毫升的血液。从提取肿瘤细胞的DNA到最终的报告,持续时间14-21天,其中包含了检测出来的癌症基因突变情况,以及针对每一种突变基因给出的用药指导建议。

Foundation Medicine提供两种产品,FoundationOne和FoundationOne Heme。两种产品均是以二代基因测序为基础,使用的测序仪包括Illumina HiSeq 2000 system和 Life Technologies’ Ion Torrent。FoundationOne检测适用于所有实体瘤,检测315个癌症相关基因的编码区域以及28个基因的内含子重排,费用为$5800。FoundationOne Heme检测针对血液恶性疾病、淋巴瘤、白血病等,检测405个基因的编码区序列和31个基因的内含子重排,以及265个基因的RNA序列来检测基因融合,费用为$7200。FoundationOne检测的方法在2013年10月时发表在了Nature Biotechnology上。

进行癌症基因测序检测需要癌症基因的数据库,公司因而建立了数据库FoundationCORE。公司在2014年12月推出了浏览器ICE 2,该浏览器的一大特点是“患者匹配”功能。临床医生可以通过它在已有的知识库FoundationCORE中搜索,寻找与患者肿瘤基因组类似的其他患者的信息。ICE 2的一个新的组成部分是PatientMatch,是一种利用FoundationCORE来增加FoundationOne和 FoundationOne Heme使用率的技术工具。通过PatientMatch,使用ICE 2网络的医生可以与在治疗具有类似基因资料病人的医生相联系,和他们分享诊断结果合治疗方案。根据公司2015年第三季度的报告,FoundationCORE已包含6万个临床病例信息。

Foundation Medicine一直在努力的一个领域是医保问题。2014年,密歇根州的大溪城重点卫生部门宣布把Foundation Medicine的癌症基因组分析服务纳入医保范围;Google表示谷歌公司将该公司的癌症基因的DNA检测服务,作为其员工福利计划的一部分。Foundation Medicine还通过了McKesson诊断交易所和美国国家综合癌症网络的认可,能够对非小细胞肺癌进行全基因组检测,并且收到了独特的Z-code标识符。此外,Foundation Medicine首席财务官Jason Ryan表示,医保范围不仅在肺癌中逐步扩大,还将会逐步涉及到其他疾病服务。

Foundation Medicine的营业收入主要来自两个方面,一个是来自生物制药公司,另一个是来自临床诊断。2015年第三季度,来自生物制药公司的收入为1170万美元,与去年同期相比增长75%;来自临床诊断的收入为1370万美元,与去年同期相比增长40%,营收增长非常明显。(生物谷Bioon.com)

牛津大学:4个基因主导人类胚胎早期变化

基因君

牛津大学:4个基因主导人类胚胎早期变化

据物理学家组织网近日报道,14年前牛津大学的研究人员测定和命名了4个基因,但这些基因的功能却始终没有破解。最近他们发现,这些基因主导着人类胚胎早期的变化,离解开谜团更近了一步。

2002年,在人类基因组计划中,进化生物学家彼得?霍兰教授和研究生安妮?布斯测定了4个基因,分别命名为Argfx,Leutx,Dprx和Tprx。这些基因属于同源框组,而已知的其他一些同源框基因在人类发展过程中主导着组织和器官的形成。然而,这些新发现的基因功能却成为谜团。

霍兰教授解释称,要发现某个基因的功能,首先要确定其在哪里开启并表达,但他们无法测出这些基因在哪里表达,直到中国研究人员完成人类早期发展阶段的基因测序,霍兰团队才得以发现这些基因开启的地方。

牛津大学的伊格纳西奥?曼索和托马斯?当维尔博士仔细分析了这些数据,发现这些基因仅在胚胎只有8到16个细胞这一短暂时间内发挥作用。这个阶段是决定这些细胞是形成胎盘的一部分,还是成长为胚胎本身的重要节点,随后这些基因就关闭了。

曼索说,令人震惊的是,在人的一生中,这些基因仅被读取了几个小时。为了找出这些基因的功能,当维尔依次取出每个基因,使它们在培养的正常成熟细胞中表达。结果发现,这些基因能开关几十个其他基因,其中包括一套可能决定胚胎发育成何种类型细胞的基因。

霍兰评论说,如果受精是生命的开始,那么这些基因则主导着人类早期的变化。

值得一提的是,研究团队还发现,这些基因仅存在于像人类一样的胎盘类哺乳动物中。曼索解释说:“在人类基因组最不稳定的19号染色体上发现了这些基因。假设它是一个DNA大熔炉,随着DNA个体的添加与移除,偶尔也会形成全新的基因。在7000万年前,也就是胎盘哺乳动物早期这些基因就出现了,并在细胞发展的早期阶段控制细胞行为。”

总编辑圈点

如果说基因是生命的蓝图,同源框基因就是根据蓝图建成生命大厦的工人,它们中大部分编码转录因子控制着动物胚胎发育过程中的诸多方面,影响动物身体的最终形态结构,并在不同的阶段发挥关键作用。人类基因组研究,很大程度上就是发现蓝图和结构功能的对应关系,并找出不同阶段和不同分工的“工人”。尽管听上去高大上,但其依靠的还是对基因测序结果一点点比对的“笨办法”。每念及此,都会惊叹于造化的鬼斧神工,也感叹人类离揭开生命奥秘还相差太远。(生物谷 Bioon.com)

基因检测远不止治病!Illumina子公司Helix将打造DNA定制化王国

基因君

乔布斯在2011年死于胰腺癌之前,曾花10万美金来给自己的DNA做了一次测序。这一做法在当时昂贵又罕见,谁想到在乔帮主离世5年之后,一模一样的基因测序已经降到了几千美金,甚至更低的价格,进入百万民众的视野。

让DNA测序发生革命性改变的公司,毫无疑问是基因测序巨头Illumina。这个价值200亿+美金的基因公司算得上是基因检测界的传奇:光是经过他们的超级计算机处理的DNA信息,就占了至今所有检测信息的90%。叹为观止的Illumina机器让基因测序成为了一种强大的工具,也进一步促使Ancestry.com、23andMe等公司在Illumina技术的基础上把检测变得越来越便宜,让基因检测治病、预测药物疗效不再只是科学家的实验。

而现在,基因测试将迎来另一波浪潮,让它超越了单纯的治疗用途。要深入理解这个即将到来的潮流,你也许需要与动脉网(微信:vcbeat)一同跟进这样一家公司——未来“基因测序领域的苹果”,Illumina的子公司Helix。

基因测序开启的定制化应用

与通常人们对基因测序的印象不同,Helix一开始的方向就不是疾病诊断。他们想要做的是基因应用商店:一个通过基因信息提供定制服务的平台。消费者的初衷可能是通过基因检测来掌握自己的某类基因数据,但这些数据在之后能为Helix所用,让用户在平台上寻找到量身定制的服务和产品。

把用户带进基因圈的步骤大概是这样:起初,你可能只是对自己有多少运动天赋感兴趣,于是向Helix申请检测自己是否拥有特别适合某种运动的基因(这项检测已经在全世界的运动员中广泛开展)。Helix寄来一个采样盒,采集你的唾液进行了基因测序,你只需要花一小笔钱就能拿到关于运动天赋的结果,但Helix已经通过这次测试掌握了你完整的基因信息。下次你再申请其他服务时就无需重新测试,而是直接调用之前的结果。进行全项基因的成本,必定会超出用户付费体验某项基因测试所付的金额。Helix这样做,背后有什么更深的意义?

首先,他们认为你还会再来做其他的测试:Helix将推出一个APP平台,以多种精彩应用来吸引用户的眼球;平台存储的基因信息将与所有APP共享,并从app获得的利润中抽成,这自然就需要大量的基因数据储备。其次,Helix打算成为你和品牌之间的连接点,推动合作品牌的顾客做基因检测,帮助品牌打造精准化服务,并从其收入中分一杯羹。

基因检测远不止治病!Illumina子公司Helix将打造DNA定制化王国

试想,营养餐、营养品公司通过顾客的基因来提供最适宜的食物、补剂,或者某个运动品牌推出“基因定做”绝版鞋。据瑞银集团近期的一项报告,这类直接针对消费者的定制服务,未来几年在任何市场领域都将占到20亿到70亿美元的份额。

目前,Helix需要和大的消费者品牌合作,把他们的应用商店模式带向主流。据传言,他们正在与全球健康减重咨询公司慧俪轻体(Weight Watchers)交涉,还将合作某个知名健身品牌。更厉害的是,越来越精准的基因信息破解技术能一次又一次地刷新人们的认识。只需进行一次DNA检测,基因相关服务会变得越来越周到,囊括你生活的方方面面。

外显子测序:更全、更高性价比

Helix希望把基因测序进一步大众化,必然要考虑测序的性价比和可拓展程度。市面上一共有三种级别的DNA解码方法:最顶端的是全基因组测序(即乔布斯做过的检测类型),整个过程相当累人,提供的基因信息多到过剩;最便宜、但信息量最少的是基因分型,仅测试基因组中的某一段,从中可以得出祖源、亲缘关系或某些疾病风险的信息;信息量处于两者之间的是外显子测序,价格通常低于1000美元,是对人类基因中能编码蛋白质的部分进行测序。

外显子测序与最常用的基因分型相比,信息量简直有如“云泥之别”,来自圣地亚哥斯克里普斯研究所的心脏病学家、基因学家Eric Topol如是说。它能识别与复杂疾病相关的基因及突变;另外,还能解锁个体的生活方式、性格特质等。这种测序方式,被Illumina认为是最快速、便宜也相对更全面的方式,也是Helix将开拓的领域。

“在对的时间,提取你的部分基因信息就行。”CEO Robin Thurston说道。在加入Helix之前,他把健身记录app公司MapMyFitness卖给了高端运动装备公司安德玛,并担任其网络健身平台的首席数码官。现在Helix公司在圣地亚哥的实验室有30多个博士,用着Illumina的超级计算机技术。Helix表示,会严格保密基因信息,并在需要的时候负责提供基因破译的服务。

在下一代测序技术(NGS)的道路上,23andMe公司因成本和技术的原因退出,Helix却似乎在高歌猛进。现在像23andMe、Ancestry.com等基因公司已经放弃更深入的技术研究,把重心转向消费者数据积累,甚至免费与药企合作,以抢占基因检测的市场。Helix不否认将来也会通过免费手段来大量累积基因信息,但他们认为,23andMe和Ancestry.com提供的都是基因分型服务,在基因信息的全面性上明显不如Helix公司的外显子测序,“回头客效应”、服务的持续能力也会弱于Helix。

“抱大腿”、广合作,建立商业模式

首次面世的Helix产品,是与美国国家地理杂志于今年11月联合推出的Geno 2.0测试,能为用户提供祖源信息。美国国家地理杂志在过去近10年曾开展了一项类似的检测,但这次与Helix的合作让服务的价格从200美元降到了149美元。更棒的是,用户如果在将来购买国家地理杂志或Helix公司的其他基因服务,就已经有资料存档,不用再做一次基因测序。Thurston说,Geno 2.0将成为首个广泛运用于消费者市场上的深度基因测序。

基因检测远不止治病!Illumina子公司Helix将打造DNA定制化王国

与美国国家地理杂志联合推出的Geno 2.0,可以追踪祖源信息

Helix推出的产品,让它直接与Illumina的客户23andMe、Ancestry.com产生了竞争,这似乎违背了Illumina之前“绝不和自己的客户竞争”的承诺。“我们对Helix提供了经济支持,”Illumina的前CEO Jay Flatley说道,“目的就是要帮助Helix降低测序的价格,建立起商业模式。”Flatley希望Helix公司提供的低价外显子测序能让其他面向消费者的基因检测公司也用他们的技术,加入他们的平台。“这也是其他公司都做不了的模式。”

Flatley还说,基因研究在价格、体量和认知上都到了一个转折点,有很大的潜力来解锁不为大众所知的精准个人信息。

去年8月,Helix在A轮融资中获得1亿美元。除了Illumina之外,Helix的其他投资者中不乏大名鼎鼎的医疗供应商,如独立医学实验室LabCorp、梅奥诊所、杜克大学、西奈山医院。西奈山医院正在打算把Helix的技术运用到几方面,比如预测夫妇未来生小孩可能出现的基因相关疾病、提供基因咨询服务等。“我们很赞同人们了解自己的基因信息,并有幸把我们的生育健康咨询服务通过Helix平台带给大众,将来会考虑用基因技术结合医疗经验的方式来开发更多的产品。”

检测也能很好玩,基因衍生品大热

正如Helix希望基因精准定制能优化生活中的方方面面,好玩的基因检测衍生品也正陆续诞生。明年年初,一家叫Exploragen的公司计划启动一个叫Vinome的酒品推荐引擎,它就是建立在一项关于DNA如何影响人们味觉的研究上的。“基因信息的精准度之高,可以据此建立起你专属的口味档案。”Vinome的开创者Ronnie Andrews声称,“然后我们就凭着这个来给你选酒。”

还有一个叫Habit的公司要在明年推出DNA定制饮食,现已拿到美国知名食品商金宝汤3200万美元的投资,引起了大量关注。也许你听说过血型饮食法,Habit公司的这项“基因饮食法”服务是一个更科学、更精确的版本。他们设计了一种包含糖、脂肪及碳水合物的“特殊饮料”,要求用户在喝饮料前后分别采集一份血样。结合血样的分析、测序结果和年龄、体重、身高、活跃程度等维度,Habit就可以选出最适合该用户的食物,量身打造饮食计划。

不过,这些公司究竟是否噱头大于实效,还有待进一步考证。著名的新闻评论媒体Vox就在一篇文章中批判Habit公司不肯公开算法、也没有通过任何临床测试。但Vox仍对基因定制营养的做法持开放的态度,表达了对基因信息解读前景的希望。

“基因苹果”初成长,挑战与希望并存

当然,“DNA应用商店”、基因测序精准服务的推广会面临不少挑战。

第一个问题是基因数据隐私安全。DNA不止是个人的密码,还能揭露有亲缘关系者的信息,一旦泄露,可能会使不少人在工作、健康保险上受到影响。但一些生物伦理学家则有不同的观点:对于Helix这样的基因技术公司来说,客户的基因信息就是商业机密,一旦沦为公用将失去大部分价值。公司从自身利益出发,也会千方百计地对这些数据进行保密。

的确,为了用户隐私起见,Helix公司已经在其信息存储平台上启用数据加密技术和身份验证准入机制。他们还把掌控权交给用户,让用户自己决定基因数据的使用方式、是否允许Helix用这些数据来提供定制化产品等。

基因检测远不止治病!Illumina子公司Helix将打造DNA定制化王国

另一个问题,也就是目前Helix面临的最大挑战,在于其现阶段的技术能力还跟不上野心。别的不说,光是在医疗领域,别看近几年的基因研究非常引人注目,基因检测却只说得上是处于婴儿时期。Helix公司一位来自哈佛的基因顾问Robert Green表示,目前只有1%-2%的基因检测真正有效发挥了预防疾病发生的作用。那么,用基因来找出适合的护肤方法等更生活化的应用,更是难上加难。

Illumina在生物医学领域也许算得上一个如雷贯耳的名字,但绝对称不上家喻户晓;他们就是想通过Helix,把基因检测真正带入大众生活中的方方面面,“基因测序领域的苹果”仍需扎根得更深、把枝叶伸展得更广,才能等到之后的丰收。

基因学家Eric Topol是最早进行全基因测序的人之一。他并不觉得测序提供的信息多么有用,但对它展现的潜力非常期待:“人类基因组DNA的30亿个碱基对,能产生的变异是我们根本无法想象的。空格将一点点被填满,我们也会对自己的命运有更多的掌控。”或者至少到那时,我们会更清楚自己适合哪种口味的葡萄酒。(生物谷Bioon.com)

Science:利用空间转录组学技术可视化观察组织中的基因表达

基因君

Science:利用空间转录组学技术可视化观察组织中的基因表达

2016年7月4日/生物谷BIOON/–在一项新的研究中,来自瑞典卡罗琳斯卡研究所和皇家理工学院等机构的研究人员开发出一种新的被称作空间转录组学(spatial transcriptomics)的高分辨率方法研究一种组织中哪些基因是有活性的。这种方法能够被用于所有类型的组织中,而且在临床前研究和癌症诊断中是有价值的。相关研究结果发表在2016年7月1日那期Science期刊上,论文标题为“Visualization and analysis of gene expression in tissue sections by spatial transcriptomics”。

疾病改变组织中RNA分子和蛋白表达。为了获得关于疾病的更多知识和优化诊断方法,对组织样品进行显微研究经常在实验室和医院中开展,但是迄今为止,科学家们只能够同时确定少量RNA分子的位置。

在这项新的研究中,来自瑞典卡罗琳斯卡研究所的Jonas Frisén教授团队与来自瑞典皇家理工学院的Joakim Lundeberg教授团队合作开发出一种新的方法,能够分析所有RNA分子的数量,并且利用显微镜提供它们的空间信息。

Frisén教授说,“通过将组织切片放在载玻片上,在其上面,我们将DNA链与内置的地址标签放在一起,这样我们就能够对活性基因产生的RNA分子进行标记。当我们分析组织样品中的RNA分子存在时,这些地址标签指示着这些RNA分子存在于组织切片中哪些地方,以及我们能够获得在哪些地方不同的基因是有活性的高分辨率信息。”

这些结果也在更加精确的诊断中是有价值的。当前的诊断方法是获取一种组织样品,将它磨碎,分析细胞混合物,但是其风险在于一些癌细胞被来自样品中所有的其他细胞的信号稀释掉,因而被忽略掉。

他继续说道,“利用我们的方法,我们能够获取肿瘤信号,而且不会被稀释掉。鉴于组织样品中的不同部分都有它们的特异性地址标签,我们能够鉴定少量的肿瘤细胞。”研究人员利用小鼠脑瘤和人乳腺癌样品证实了这一点。

这种方法能够用于所有类型的组织和疾病中。它也能够提供关于癌症诊断中的疾病异质性的信息,就像在研究人乳腺癌样品时所证实的那样。

Frisén教授说,“它使得比以往更高分辨率和更精准地研究哪些基因在组织中是有活性的成为可能,而这在基础研究和诊断中是有价值的。”(生物谷 Bioon.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP

Visualization and analysis of gene expression in tissue sections by spatial transcriptomics

Patrik L. Ståhl1,2,*, Fredrik Salmén2,*, Sanja Vickovic2,†, Anna Lundmark2,3,†, José Fernández Navarro1,2, Jens Magnusson1, Stefania Giacomello2, Michaela Asp2, Jakub O. Westholm4, Mikael Huss4, Annelie Mollbrink2, Sten Linnarsson5, Simone Codeluppi5,6, Åke Borg7, Fredrik Pontén8, Paul Igor Costea2, Pelin Sahlén2, Jan Mulder9, Olaf Bergmann1, Joakim Lundeberg2,‡, Jonas Frisén

doi:10.1126/science.aaf2403
PMC:
PMID:

Analysis of the pattern of proteins or messengerRNAs (mRNAs) in histological tissue sections is a cornerstone in biomedical research and diagnostics. This typically involves the visualization of a few proteins or expressed genes at a time. We have devised a strategy, which we call “spatial transcriptomics,” that allows visualization and quantitative analysis of the transcriptome with spatial resolution in individual tissue sections. By positioning histological sections on arrayed reverse transcription primers with unique positional barcodes, we demonstrate high-quality RNA-sequencing data with maintained two-dimensional positional information from the mouse brain and human breast cancer. Spatial transcriptomics provides quantitative gene expression data and visualization of the distribution of mRNAs within tissue sections and enables novel types of bioinformatics analyses, valuable in research and diagnostics.

NBT发文表示无法重复NgAgo介导的基因编辑并发布编辑部声明

基因君

11月28日,《自然·生物技术》(以下简称NBT)杂志发表一篇由多国科学家署名的题为“Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute”的correspondence类型的文章,直指NgAgo不能够进行基因编辑。

NBT发文表示无法重复NgAgo介导的基因编辑并发布编辑部声明

这些联名的科学分别来自韩国首尔基础研究所、弗莱堡大学、美国Mayo医学中心和首尔国立大学,应该说这篇质疑NgAgo的文章具有一定的国际影响,或许这篇论文就是此前北大魏文胜等人提及的那篇文章导致他们的论文最终只发表在了国内期刊Protein & Cell上。加上之前发表在Cell Research和Protein & Cell上的两篇有关NgAgo的文章,这篇NBT是第三篇文章表示NgAgo介导的DNA编辑是不成功的。值得注意的是这篇NBT文章也是经过同行评议的论文,这一点文末有显示(下图)。

NBT发文表示无法重复NgAgo介导的基因编辑并发布编辑部声明

类似于Protein & Cell文章中重复那样,这篇NBT也是严格按照此前韩春雨NBT论文提供的实验方法而进行实验,并且也尝试了一对一的实验重复(见下图)。

NBT发文表示无法重复NgAgo介导的基因编辑并发布编辑部声明

最终这篇NBT论文给出的结论是无法按照韩春雨论文中提供的实验信息重复出NgAgo具有DNA编辑功能(原文:On the basis of the above data, we conclude that in conditions designed to replicate those in Gao et al co-delivery of plasmid DNA encoding NgAgo and a 5′-phosphorylated single-strand gDNA alone is insufficient to induce gene editing at the indel frequencies in cultured human cells reported in the original study.)

另据《澎湃新闻》报道,NBT针对刚刚在线发布的文章还出了一份“编辑部声明”,BioArt转载如下:

《自然-生物技术》声明全文:

他们都设法去重复韩春雨及同事发表在原论文中图4的结果,这一关键图表展示了对哺乳动物细胞内源性基因位点的编辑。这些团队无一能在任何位点,或在任何高于检测方法敏感度的条件下观察到NgAgo所诱发的变异。

《自然-生物技术》已审慎考虑过所有关于韩春雨及同事原着论文的评论。在任何情况下,如果一篇论文在发表后遭到批评,我们都会对各种批评进行审慎和全面的评估,此次也不例外。今天,我们不仅发表了Cathomen及同事的通信文章,这可能会否定原论文所称的有效编辑内源性基因的这一主要发现;而且我们还连同原论文一起发表了“编辑部关注”,以确保读者知晓Cathomen及同事的论文,以及另外一篇在别处发表的论文(doi:10.1007/s13238-016-0343-9)所提出的担忧。目前,原论文的作者中有两位,即韩春雨和沈啸,同意我们发表的“编辑部关注”,而高峰、姜峰和Yongqiang Wu则认为这并不合适。

《自然-生物技术》认为,让原作者在能力所及的情况下对上述通信文章所提出的担忧展开调查,并补充信息和证据来给原论文提供依据是非常重要的。因此,我们将继续与原论文的作者保持联系,并为他们提供机会,以在2017年1月底之前完成其调查。届时,我们会向公众公布最新进展。(生物谷Bioon.com)

Science:疟疾疗法开发新利器—“雄性基因”

基因君

Science:疟疾疗法开发新利器—“雄性基因”

图片来源:medicalxpress.com

2016年7月4日 讯 /生物谷BIOON/ –近日,来自Pirbright研究所的研究人员成功分离到了一种特殊基因,该基因可以从传播疟疾的蚊子种群中帮助确定雄性蚊子,相关研究刊登于Science杂志上,文章中研究者对名为Yob的基因特性进行了描述分析,该基因是冈比亚按蚊性别决定过程的主要控制子。

在昆虫群体中,性别通常是在昆虫出生的几个小时内通过最基本的遗传信号所决定的,而这些遗传信号会激活一系列基因的表达,这些基因所产生的性别特异性产物最终会控制昆虫个体发育成雄性或雌性,而其发育背后的分子机制存在非常大的可变性,尤其是不同群体的昆虫的原始性别决定基因会发生明显地变化。和人类类似,许多昆虫都拥有一对儿性染色体,Y染色体包含着主要的雄性决定基因。

文章中,研究者利用高通量的测序技术对冈比亚按蚊雄性蚊子和雌性蚊子胚胎所产生的遗传信息进行测序分析研究,在对测序数据进行对后后,研究者发现,仅在雄性蚊子机体中,转录物的片段才和Yob蛋白项符合;研究者进一步研究发现,Yob是由Y染色体所编码的,而且Yob的活性仅限于雄性机体,而且其对于产生性别决定通路基因的雄性特异性产生非常必要。

研究者表示,Yob的转录物对雌性蚊子有害,当将该蛋白注射到冈比亚按蚊性别混合的早期胚胎中或者阿拉伯按蚊机体中时,在胚胎孵育出来之前,蛋白Yob就可以杀灭雌性蚊子胚胎,而雄性蚊子胚胎则不受影响;相反,使得胚胎中Yob沉默表达则对于雄性是致死性的,相关研究结果表明,除了确定雄性之外,Yob蛋白对于控制剂量补偿作用非常关键,而剂量补偿作用通常会平衡雄性单一X染色体和雌性双X染色体上基因表达产物的水平。

研究者认为,本文研究对于控制疟疾或许非常重要,疟疾作为撒哈拉大沙漠以南非洲地区的主要流行性疾病,每年至少引发2亿临床感染病例,而且每年会有50万人死亡。当前利用杀虫剂来控制蚊子依旧是有效抵御疟疾的主要手段,但随着杀虫剂的使用蚊子群体的药物耐受性越来越强,常用的杀虫剂慢慢变得不再有效,当然这就要求科学家们开发出一种新型持久性的策略来有效抑制蚊子传播疟疾,而基于遗传性策略,比如控制农业害虫或许会大有作为。本文研究中研究者发现了Yob蛋白或具有杀灭雌性蚊子的特性,这或许就可以为科学家们提供一种强有力的工具来对雄性按蚊进行工程化操作从而有效控制疟疾的传播。(基因宝jiyinbao.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP.

A maleness gene in the malaria mosquito Anopheles gambiae

Elzbieta Krzywinska1,*, Nathan J. Dennison2,3,*, Gareth J. Lycett2, Jaroslaw Krzywinski1,2,†

The molecular pathways controlling gender are highly variable and have been identified in only a few nonmammalian model species. In many insects, maleness is conferred by a Y chromosome–linked M factor of unknown nature. We have isolated and characterized a gene, Yob, for the M factor in the malaria mosquito Anopheles gambiae. Yob, activated at the beginning of zygotic transcription and expressed throughout a male’s life, controls male-specific splicing of the doublesex gene. Silencing embryonic Yob expression is male-lethal, whereas ectopic embryonic delivery of Yob transcripts yields male-only broods. This female-killing property may be an invaluable tool for creation of conditional male-only transgenic Anopheles strains for malaria control programs.

Nat Commun:双受体介导精准基因干扰技术

基因君

2016年11月24日,《Nature communications》杂志在线发表了南京大学化学化工学院鞠熀先教授的研究论文,该论文提出双受体介导的精准基因干扰技术,以及该技术对癌症的新治疗方法。

Nat Commun:双受体介导精准基因干扰技术

基因干扰技术在人类疾病治疗中具有重要医用价值。该技术利用特定载体siRNA运载到靶细胞中,选择性地沉默目标基因,从而抑制蛋白质的合成、诱导细胞凋亡,实现疾病治疗。将siRNA高效、高特异性地运载到目标细胞是实现基因干扰治疗的关键。

传统的siRNA运载体系常用抗体或核酸适体为识别分子,与细胞表面单种受体结合,实现靶向功能。由于肿瘤细胞表面高表达的受体在正常细胞表面也可能表达,采用单受体识别难以保证运载的精准靶向。针对这一关键问题,鞠熀先教授研究组利用核酸适体sgc8c和sgc4f与细胞表面两种特定的受体结合,形成双锁结构,发展了一种双受体介导的siRNA运载体系,成功实现了细胞亚型的区分,以及低毒、高效的siRNA运载。

Nat Commun:双受体介导精准基因干扰技术

双受体介导的细胞亚型特异性siRNA运载示意图

该方法通过DNA自组装,首先设计合成了一个含siRNA的核酸纳米载体,其一端为发夹结构。发夹的环部是锌离子依赖性DNA酶的底物。该载体具有血清稳定性好、细胞毒性小、运载能力以及内涵体逃逸能力高的优点。在载体与细胞表面结合的sgc8c和sgc4f相遇时,核酸适体sgc4f一端的锌离子依赖性DNA酶可将载体上的发夹结构催化裂解,形成一条DNA单链。该单链进一步打开核酸适体sgc8c上的发夹,通过sgc8c的介导,将siRNA运载到靶细胞中(图1)。对于只能结合sgc8c或sgc4f一种核酸适体的细胞,该运载系统没有活性,因而减小了脱靶性。

该研究为高效、高特异性siRNA运载以及癌症的精准治疗提供了新的思路。(生物谷Bioon.com)

Cell 子刊:特殊基因突变热点或和乳腺癌患者良好预后直接相关

基因君

Cell 子刊:特殊基因突变热点或和乳腺癌患者良好预后直接相关

图片来源:medicalxpress.com

2016年7月4日 讯 /生物谷BIOON/ –Kataegis突变机制是科学家们近年来发现的一种现象,其是在基因组热点区域发生的多个突变簇,研究者此前在一些癌症中发现过这种异常情况,但他们并不清楚kataegis在肿瘤发生及病人预后过程中的作用;近日来自加利福尼亚州立大学圣地亚哥医学院和穆尔斯癌症中心(Moores Cancer Center)的科学家们通过研究发现,kataegis实际上是一种乳腺癌的阳性标记,携带这些突变热点的癌症患者往往侵袭性癌症较少,而且患者预后较好。

相关研究刊登于国际杂志Cell Reports上,研究结果表明,患者机体的kataegis状态或可帮助医生们制定可以在患者机体中更好发挥作用的的新型疗法;研究者Kelly Frazer博士指出,我们并不知道引发kataegis现象的原因是什么,在这项研究之前我们也并不清楚kataegis机制在临床研究中的重要性。如今通过研究我们发现,kataegis机制和乳腺癌患者良好预后直接相关。

kataegis机制大约在55%的乳腺癌患者中发生,为了确定其在患者预后过程中所扮演的重要角色,研究者Frazer及同事对来自癌症基因组图谱(The Cancer Genome Atlas)计划中可用的人类乳腺癌数据库进行研究,最终研究者确定了97种乳腺肿瘤的kataegis状态,随后将相关信息同患者的数据进行匹配,比如患者诊断的年龄、疗法以及预后等,同时研究者还对另外412份被预测为kataegis状态的人类乳腺癌样本进行了分析。

研究者发现,多种临床因素和kataegis直接相关,同时这些突变热点往往在较晚年龄诊断出的乳腺癌患者中比较常见,同时在HER2阳性及高级别肿瘤患者中也比较常见;研究者Matteo D’Antonio认为,kataegis突变可以抑制附近基因的异常表达,附近基因的异常表达常常会引发肿瘤产生以及肿瘤侵袭。

除了可以提供较好的预后之外,kataegis状态或许还可以帮助确定患者的疗法选择,研究者证实了,携带kataegis的肿瘤往往含有较高水平的人类表皮生长因子受体II(HER2),HER2阳性的乳腺癌患者通常利用HER2靶向疗法进行治疗,这也就意味着这种类型肿瘤患者的预后往往相对较好。

最后研究者指出,未来还需要进行大量研究才能使得kataegis状态早日应用于临床治疗中,然而利用相关的基因组学数据,研究者已经可以帮助针对不同患者制定新型的个体化疗法了,比如目前正在进行临床试验的免疫疗法等。(基因宝jiyinbao.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP.

 

Kataegis Expression Signature in Breast Cancer Is Associated with Late Onset, Better Prognosis, and Higher HER2 Levels

Matteo D’Antonio, Pablo Tamayo, Jill P. Mesirov, Kelly A. Frazer

 

Kataegis is a mutational process observed in ∼55% of breast tumors that results in hypermutation in localized genomic regions. Using whole-genome sequence data of 97 tumors, we examined the distribution of kataegis loci, showing that these somatic mutations are over-represented on chromosomes 8, 17, and 22 and enriched in genic regions and active chromatin elements. We show that tumors harboring kataegis are associated with transcriptome-wide expression changes consistent with low invasive potential. We exploit the kataegis expression signature to predict kataegis status in 412 breast cancers with transcriptome but not whole-genome sequence data and show that kataegis loci are enriched in high-grade, HER2+ tumors in patients diagnosed with breast cancer at an older age and who have a later age at death. Our study demonstrates that kataegis loci are associated with important clinical features in breast cancer and may serve as a marker of good prognosis.

相关会议推荐

Cell 子刊:特殊基因突变热点或和乳腺癌患者良好预后直接相关

2016(第二届)生物标志物研讨会

会议时间:2016.09.09-2016.09.10     会议地点:上海

会议详情: http://www.bioon.com/z/2016biomarker/

北京雾霾耐药基因引恐慌事件的5个关键误读

基因君

“北京雾霾中有耐药细菌!”最近几天笼罩雾霾的北京市民又一次这条朋友圈的消息震惊了!

北京雾霾耐药基因引恐慌事件的5个关键误读

▲笼罩在雾霾之中的北京▲笼罩在雾霾之中的北京

“耐药细菌”不就是俗称的“超级细菌”吗?这项来自瑞典哥德堡大学的研究成果,论文标题为“The structure and diversity of human, animal and environmental resistomes”(人类、动物与环境耐药组的结构与多样性),被发表在《Microbiome》(微生物)期刊上。文中研究人员证实,来自北京的空气样品平均含有64.4种抗生素耐药基因,其中包括对人类拥有的最为强大的抗菌药——碳青霉烯类(Carbapenems)抗生素产生耐药性的基因。

论文作者Joakim Larsson在接受《南方周末》采访时说,现在人们没有必要对提到的北京雾霾样本中的耐药基因有任何恐慌,目前的研究还不能说明任何问题。

对,你看到的是耐药基因,而不是什么耐药细菌!但是很多媒体在报道这项研究的时候用了“耐药细菌”,耐药基因和耐药细菌有区别吗?

其实,耐药基因不等于耐药细菌,目前对北京雾霾中有耐药基因也不能说明实质性问题。

不过,对抗生素、抗菌药、耐药菌、耐药基因等这些概念还是“傻傻分不清”,正解到底是什么呢?

耐药菌和耐药菌基因的区别是什么?

什么是耐药菌?正常来说,在细菌没产生耐药性之前,药物可以进入细菌并杀死它,但是有的细菌产生耐药性后,会产生出一种酶,导致药物失去活力,这就是一种耐药性的表现。要注意的是,并不是说细菌在药物的“培养”下进化了,而是说它们适应了药物而产生了耐药性。抗菌药的使用对细菌的生存和繁殖来说是一种不利的因素,脆弱的细菌会被杀死,但相对耐药的细菌就会在再用抗菌药物时成为优势菌群。因此可以说,细菌耐药是被选择出来的,所以抗菌药的使用(或选用)被称为抗菌药选择压力。

在抗菌药的选择性压力作用下,敏感性细菌受到抑制甚至死亡,其生物活性和生物量会下降;而具有耐药能力的细菌则恰恰相反,其生物活性和生物量反而会逐渐上升,替代这些脆弱而敏感的细菌,最终体现为微生物群落的多样性下降和整体耐药水平的上升。

细菌有核,但是与我们熟知的细胞核不同。细菌的核比较原始,无核膜、核仁,所以称为核区或细菌染色体。研究发现,核区实际上就是一个巨大的环状双链DNA分子,耐药基因指的就是这些细菌DNA的事儿(基因是具有遗传效应的DNA片段)。

所以,北京雾霾样本中检测出的细菌对抗菌药的耐药基因,是使细菌对抗菌药产生耐药性的基因,并不会使人类对抗生素产生耐药性。

的确,耐药基因会随着耐药菌的排放而进入环境中,并能在适当的条件下稳定存在,即便携带耐药基因的菌株死亡,释放出的耐药基因裸露DNA分子也能在环境中长期存在。所以,发现耐压基因不等于发现了耐药菌,因为研究采集的样本的DNA,而不是耐药菌。

但是,在自然环境中检测出细菌耐药基因,也就意味着空气、水体或土壤成为了耐药性基因的储存库,也或许会成为耐药性基因扩张的媒介,需要人类对抗菌药物的滥用问题引起足够重视。并且,从以往的研究中可以得知,科学家早已经在不同的环境中检出超过100种细菌耐药基因,几乎所有地表水、沉积物都有检测出耐药基因,甚至在10米以下的地下水中等都已检出耐药基因的存在。

耐药性和致病性的关系是什么?

在空气中发现细菌耐药基因的存在的确是对人们滥用抗菌药的警示,但是,这并不代表会直接对人体产生致病性。Joakim Larsson明确表示:人们无需恐慌,耐药基因本身并不致病。而且,这篇论文研究的也不是耐药基因的致病性,而是耐药基因的传播途径。

空气中大部分成分是无机物,但有少部分微生物,这些微生物中可能存在耐药性。由于空气的流动性,地面上的微生物和副产物都会释放到空气中,所以中国和美国的空气中,都检测到了类似的耐药基因,但研究人员也并不知道这些耐药基因究竟是从哪来的,因为“环境中广泛存在”。在论文末尾,研究结论表明,到现在为止,空气传播作为耐药性传播的途径,还缺乏更充分的研究。

北京雾霾耐药基因引恐慌事件的5个关键误读

▲耐药菌的传播途径▲耐药菌的传播途径

北京市卫计委援引专家观点解释称,在我们周围环境中,有大量的细菌存在,不仅在空气中,在口腔、鼻腔、呼吸道、胃肠道,都存在细菌或真菌,它们对人体是没害的,大量细菌和我们是共生共存的关系。细菌的耐药性和致病性是完全不同的概念,耐药性的增加不意味着致病性的增强。人体自身具有免疫力,这些细菌大多数对正常人没有致病力,甚至有些细菌是有益的。

Joakim Larsson明确强调,他的研究只表明北京雾霾的空气里存在抗药基因,并不表明携带这些抗药基因的细菌同时能够致病。“人们不会因为细菌耐药就得病。只是说如果细菌造成了疾病,如果这种细菌携带有耐药基因,细菌抗药会使得疾病更加难以治疗。”

几乎每个国家都存在抗生素耐药性问题。根据世卫组织的报告,在有些国家,由于耐药性,碳青霉烯类抗生素对半数以上接受治疗的肺炎克雷伯菌感染患者无效。目前已在至少十个国家(澳大利亚、奥地利、加拿大、法国、日本、挪威、斯洛文尼亚、南非、瑞典、英国)证实,作为用于淋病的最后药物手段(第三代头孢菌素类抗生素)治疗失败。

细菌侵入人体一定会生病吗?

空气中存在的细菌不计其数,只有在医院的洁净手术间内才能做到无菌,而且也不是随时百分百无菌,同一台无菌手术的无菌器械使用的安全时效可达8小时,影响无菌手术室无菌器械的不安全因素与器械表面残留的血迹与是否直接暴露于空气中有关。

由此可见,人类在与细菌共生,包括人体内部。

北京雾霾耐药基因引恐慌事件的5个关键误读

▲放大1000万倍的人体,细菌和人体共存▲放大1000万倍的人体,细菌和人体共存

人体内已有的细菌会自己保持平衡,不会导致人生病,外部细菌在进入人体后,人体自身的免疫系统就会自动开启防御功能,有的外来细菌“入侵者”会被人体的免疫系统打败,但是有的不会被打败,这些没有被打败的细菌就会在机体内存在、增殖,细菌的增殖过程也是致病过程。增殖需要营养,细菌夺取了机体所必须的营养物质,细菌的生长产生各种各样的代谢产物,大量的细菌代谢产物打乱了机体的生理平。

以常见的女性尿路感染来说,非常容易复发,阴道环境的改变是引起复发的重要因素。正常阴道菌群以乳酸菌占优势地位,尤其是产生过氧化氢的乳酸菌属占支配地位。所以,如果缺乏产生过氧化氢的乳酸菌的妇女,阴道大肠杆菌定植的频率明显增加,成为复发性尿路感染的重要发病机制。

病毒和细菌的区别是什么?

从结构层面来说,细菌有细胞壁、DNA、细胞器,可以自行产生合成需要的酶并代谢,细菌是一种原始单细胞微生物,是以二分裂方式进行繁殖的原核生物。而病毒没有细胞结构,只能靠寄生在生物体内(宿主)来维持生命,不属于原核生物,也不属于真核生物,靠复制增殖。病毒是一种由遗传物质和蛋白质组成的介于生命和非生命之间的物质形式,所以,病毒是可以遗传、变异、共生、干扰等生命现象的微生物。病毒要比细菌小得多,细菌是微米量级大小,病毒是纳米量级大小(1微米等于1000纳米)。

北京雾霾耐药基因引恐慌事件的5个关键误读

▲细菌和病毒的区别▲细菌和病毒的区别

细菌是可以无害于人体甚至有益于人体健康的,也是可以独立存在的。人体内细菌的数量比细胞的数量还要多,根据以色列和加拿大的几位研究者对人体细菌和细胞的数量进行的研究,一个体重70千克、身高1.7米的“标准参考人”(reference man)身上的细菌/细胞比值平均为1.3:1。

病毒存在的目的就是不断复制自己,所以不让人感染就体现不出病毒存在的“价值”,而且病毒可以感染细菌,让有益菌变成有害菌,但是细菌无法感染病毒。

病毒不能独立生存在于空气中,因为病毒完全依赖宿主细胞的能量和代谢系统,不过,病毒是可以通过各种途径传播的。比如,SARS病毒主要通过近距离气溶胶(大气)和亲密接触传播,不过要受到环境的温度、湿度、紫外线和空气中各种化学污染物的影响。不同病毒的存活力、传播途径是不同的,同样受各种条件限制,所以,这也就是为什么流感病毒易在春季形成高发期。当然,流感也分不同的病毒种类,所以,高发季节也不一定都相同。

而细菌存在于环境中的各个角落,有附着在物体和生物体上的细菌,也有游离的细菌,对环境的利弊也种类和条件不同而不同。

“最后的抗生素”这种说法准不准确?

Larsson教授反复强调,北京雾霾样本中检测出的抗生素耐药基因是使细菌对抗生素产生耐药性的基因,只会存在于细菌上面,并不会使人类对抗生素产生耐药性。只有全部满足以下三个条件时,含有这种基因的细菌才会令人担忧:一是证明这种细菌属于可以引发疾病的细菌;二是这种细菌在空气中具有活性;三是空气中存在极大数量的此种细菌。只有三个假设完全成立,人们才可能因为吸入空气中的细菌而生病。那时,细菌携带的抗生素耐药基因会使人们服用的抗生素失效,从而导致人们无法通过服用某些抗生素类药物而治疗相关疾病。

对于碳青霉烯类抗生素是抗生素里“最后的稻草”的说法,清华大学生命科学院副研究员付彦表示,细菌是低等生物,易发生变异,抗生素在杀死大批细菌的同时,也会有一些细菌留存下来,成为耐药菌。

北京雾霾耐药基因引恐慌事件的5个关键误读

▲碳青霉烯类抗生素是抗菌活性最强、抗菌谱最广的非典型β-内酰胺抗生素▲碳青霉烯类抗生素是抗菌活性最强、抗菌谱最广的非典型β-内酰胺抗生素

“耐药菌是细菌在被消灭的过程中存在一个不断升级、筛选的结果”付彦表示,但与此同时,抗生素也在不断升级,从传统的青霉素,到后来的先锋1号,先锋2号等,不应该说某一种抗生素就是“最后的稻草”。“就像杀毒软件和病毒的关系,细菌在升级,抗生素也在升级。”付彦表示。

“对人体来说,细菌和病毒比起来,还是相对好对付。”付彦说,比如艾滋病毒,乙肝病毒等,人类至今也没强力彻底杀灭病毒的手段。

“碳青烯霉类是一类重要抗生素,近年我国临床环境此类耐药呈上升趋势,都与用药有关。”中科院广州地球化学研究所研究员应光国说。随着抗生素使用,出现耐药现象是自然规律。但我们要慎重用药,减慢其耐药基因出现或传播的速率。(基因宝jiyinbao.com)

内容资料来源:生物谷、南方周末、财新网、新京报

魏巍、李劲松、肖文君、王明连、王洁、辛英。 小汤山医院SARS病房内外空气中SARS病毒机器RNA的监测[J]。 中国卫生检验杂志(2005.6)。 第 648页

杨芳。 人工湿地中抗生素耐药菌和耐药基因环境行为研究[J]。 第4页

辛宏、李玮。 女性复发性尿路感染发病机制研究现状[J]。 中国全科医学(2004.7)。 第435页

Nat Commun:发现控制鼻子的形状基因

基因君

近日,英国伦敦大学学院遗传学教授Andrés Ruiz-Linares在《Nature communications》杂志发表了的一篇在线论文,该论文表示发现了人类面部特征的调控人类鼻子形状的决定性基因。

Nat Commun:发现控制鼻子的形状基因

为什么有些人的鼻子又尖又窄,而有些人是宽鼻梁?科学家们研究了约6000人的基因组,从中分析出4对参与调控鼻子形状的基因和一对影响下巴突出程度的基因。

研究者表示,这些发现将会帮助我们了解自身的演化史。主持这项研究的伦Ruiz-Linares说:“现在我们的主要工作是尝试识别这些基因,并利用它们去了解我们的演化问题——这些性状的演变在多大程度上是适应性的,它们又能在何种程度上反映人群的历史。”此外,研究者认为这项研究还可以帮助我们更好地理解发育缺陷,甚至可以给法院工作者提供更准确的嫌疑犯面部重建。

有些人对此持怀疑态度。已发现的与每种性状相关的基因变异只占人群中观察到的变异的约1%,这表示还有更多的基因在起作用。荷兰伊拉斯姆斯大学遗传鉴定所主任Manfred Kayser表示:“在把相关基因应用到根据DNA去预测面部特点之前,我们首先需要在更大型的研究中确认这些结果,并且研究结果要能在没有相关性的样本中重复。”

研究中,研究者使用了5958名来自拉美国家的参与者的DNA样本和照片进行了研究。作者解释说,由于拉丁美洲同时生活着美洲土着、欧洲血统和非洲血统的人,因此这个群落(拉丁美洲人群)为探究面部特征的多样性提供了非常好的机会。Ruiz-Linares.说:“欧洲人的通常有着窄而突起的尖鼻,而美洲本地人的鼻子则更平坦、更宽。”

在研究中,第一步,他们仔细查看了参与者的照片并将他们的面孔按照14种不同的特征属性——包括鼻梁的宽度,鼻子突出的程度,还有鼻尖的形状等——分为三个档次。第二步,他们使用3D电脑模型更精确地分析了大约一半参与者的七种面部特征。在两种方法中,科学家都会仔细检查参与者的基因信息,以弄明白待研究的性状与基因之间的联系。

研究发现,一种被命名为EDAR的基因的变异会影响下巴的突起程度。有趣的是,这个基因会影响多种面部特征,此前科学家发现它也能影响耳垂的大小,胡须的浓密程度,还有一个人的头发是不是直的。研究发现调控鼻子形状的基因也有多个。总体上来说,GLI3和PAX1基因控制鼻孔的大小,而RUNX2基因控制鼻梁的宽度。DCHS2基因调控鼻子的突起程度,即决定鼻尖是否朝上和鼻尖的角度——或者说它决定了你的鼻子是否迷人挺拔。Ruiz-Linares认为这些发现很有意义,他说:“众所周知,这些基因参与了骨和软骨的合成,以及颅面部的发育。”不仅如此,科学家还发现,3个与鼻子形状相关的基因显示了现代人和我们已经灭绝的近亲——尼安德特人和丹尼索瓦人——之间的差异。这说明,这些基因可能参与调控了与我们和我们古代近亲之间不同的相貌特征。(生物谷Bioon.com)

健康一生

apasstour 医健游测序宝