选自:生物谷
本文中,小编整理了近年来基因编辑大咖张锋团队的重要研究成果,与大家一起学习!
图片来源:2016.igem.org
图片来源:2016.igem.org
【1】Science:基因编辑大牛张锋开发出RESCUE技术,可扩大RNA编辑能力
doi:10.1126/science.aax7063
基于CRISPR的工具彻底改变了我们靶向与疾病相关的基因突变的能力。CRISPR技术包括一系列不断增长的能够操纵基因及其表达的工具,包括利用酶Cas9和Cas12靶向DNA,利用酶Cas13靶向RNA。这一系列工具提供了处理突变的不同策略。鉴于RNA寿命相对较短,靶向RNA中与疾病相关的突变可避免基因组发生永久性变化。此外,使用CRISPR/Cas9介导的编辑难以对诸如神经元之类的某些细胞类型进行编辑,因而需要开发新策略来治疗影响大脑的破坏性疾病。
在一项新的研究中,美国麻省理工学院麦戈文脑科学硏究所研究员、布罗德研究所核心成员张锋(Feng Zhang)及其团队如今开发出一种称为RESCUE(RNA Editing for Specific C to U Exchange, C→U交换特异性的RNA编辑)的策略。相关研究结果发表在Science期刊上。
【2】Science:基因编辑大牛张锋开发出新型基因编辑技术—CRISPR相关转座酶
doi:10.1126/science.aax9181
在一项新的研究中,来自美国麻省理工学院、布罗德研究所和美国国家卫生院(NIH)的研究人员发现CRISPR相关的转座子可用于将定制的基因插入到DNA中而不需要切割它,相关研究结果发表在Science期刊上,在这篇论文中,他们描述了他们的新型基因编辑技术,以及它在细菌基因组中进行测试时的效果。
近年来,CRISPR基因编辑技术因它具有治疗遗传性疾病的潜力而成为头条新闻。不幸的是,尽管围绕这种技术进行了大量研究,但它仍然不适合用于人类患者。这是因为这种技术容易出错—在切割DNA链时,CRISPR有时也会进行脱靶DNA切割,从而导致意料之外的不可预测的后果(有时会导致癌症)。在这项新的研究中,这些研究人员找到了一种方法,即将CRISPR与另一种蛋白结合使用,对DNA链进行编辑而不对它进行切割—他们称之为CRISPR相关转座酶(CRISPR-associated transposase, CAST)。
【3】基因编辑大牛张锋新力作!发现第三种CRISPR-Cas系统,显著降低脱靶效应
doi:10.1038/s41467-018-08224-4
来自原核生物CRISPR/Cas系统的酶已被用作可编程的和高度特异性的基因组编辑工具。目前的基因组编辑技术集中在II型CRISPR-Cas系统上,该系统含有单个用于DNA切割的蛋白效应核酸酶。然而,到目前为止,仅有两个II型核酸酶家族用于人细胞中的基因组编辑:Cas9,即一种由两个向导RNA(gRNA)引导的核酸酶,含有两个核酸酶结构域:HNH和RuvC,其中这两个gRNA为CRISPR RNA(crRNA)和tracrRNA;Cas12a,即一种由单个gRNA引导的核酸酶,含有单个结构域:RuvC,其中这单个gRNA为crRNA。
在一项新的研究中,来自美国布罗德研究所的张锋(Feng Zhang)及其团队着重关注第三种II型蛋白效应核酸酶:Cas12b,即一种由两个gRNA引导的核酸酶,含有单个结构域:RuvC,其中这两个gRNA为crRNA和tracrRNA。尽管Cas12b蛋白通常比Cas9和Cas12a小,因而从通过病毒载体进行细胞内递送的观点来看具有吸引力,但是得到最好描述的来自嗜酸耐热菌(Alicyclobacillus acidoterrestris)的Cas12b核酸酶(AacCas12b)在48°C时表现出最佳的DNA切割活性,这阻止它在哺乳动物细胞中的应用。张锋团队试图鉴定出在较低温度下有活性的Cas12b家族成员,这样就可用于人类基因组编辑,相关研究结果发表在Nature Communications期刊上。
【4】Nature:大牛张锋教授证实CRISPR–Cas13可靶向哺乳动物细胞中的RNA
doi:10.1038/nature24049
早在2016年,科学家们就发现了结合和切割单链RNA而不是DNA的CRISPR蛋白(Science, doi:10.1126/science.aaf5573)。如今,在一项新的研究中,来自美国麻省理工学院(MIT)的研究人员对这种被称作CRISPR-Cas13a的系统进行调整,使之在哺乳动物细胞中发挥作用,相关研究结果发表在Nature期刊上。
在美国罗彻斯特大学开展RNA靶向CRISPR系统研究的Mitchell O’Connell(未参与这项研究)注意到,“在CRISPR之前,RNAi(RNA干扰)是调节基因表达的理想方法。但是Cas13a的重大益处之一是它似乎具有更强的特异性,而且这种系统对哺乳动物细胞而言并不是内源性的,因此你不太可能扰乱细胞中天然的转录后网络。相反,RNAi利用内源性机制开展基因敲降(gene knockdown,即抑制基因表达)。”
【5】Cell:张锋发表综述详细介绍第二类CRISPR-Cas系统
doi:10.1016/j.cell.2016.12.038
近期张锋教授也与另外两位学者在Cell杂志上发表了题为“SnapShot: Class 2 CRISPR-Cas Systems”的特写文章,介绍了新一代CRISPR基因组编辑系统:Class 2 CRISPR-Cas Systems。2015年,张锋及其同事们就报告称发现了一种不同的CRISPR系统,具有潜力实现更简单、更精确的基因组工程操作。这个新系统是通过在不同类型的细菌中搜寻了成百上千种的CRISPR系统,寻找具有有用特性的酶,结果来自氨基酸球菌属(Acidaminococcus)和毛螺菌科(Lachnospiraceae)的Cpf1酶成为新的候选物。
这一新发现的Cpf1系统有几个重要的方面不同于以往描述的Cas9,在生物通最先报道的张锋Cell:新一代CRISPR基因组编辑系统这篇文章中就提到:Cpf1系统更简单一些,它只需要一条RNA。Cpf1酶也比标准SpCas9要小,使得它更易于传送至细胞和组织内;Cpf1以一种不同于Cas9的方式切割DNA。当Cas9复合物切割DNA时,它切割的是同一位点的两条链,留下的“平端”(blunt ends)在重新连接时往往会发生突变。
【6】Science:基因编辑大牛张锋再发力,揭示只靶向RNA的新型CRISPR系统
doi:10.1126/science.aaf5573
在一项新的研究中,来自美国国家卫生研究院(NIH)、哈佛大学-麻省理工学院布罗德研究所(简称布罗德研究所)、麻省理工学院、罗格斯大学新伯朗士威校区和俄罗斯斯科尔科沃理工学院等机构的研究人员描述了一种靶向作用于RNA而不是DNA的新型CRISPR系统。相关研究结果发表在Science期刊上。
这种新的CRISPR系统有潜力提供一种强大的方法进行细胞操纵。尽管DNA编辑让细胞基因组发生永久性变化,但是这种基于CRISPR的RNA靶向方法可能允许科学家们让细胞基因组发生可根据需要进行上下调节的临时变化,而且比现存的RNA干扰方法具有更大的特异性和功能性。在这项研究中,来自布罗德研究所的张锋(Feng Zhang)及其同事们与来自NIH的Eugene Koonin及其同事们、来自罗格斯大学新伯朗士威校区的Konstantin Severinov等组成一个合作小组,鉴定出一种RNA引导的能够靶向结合和降解RNA的酶C2c2,并对C2c2进行功能性描述。
【7】Cell:张锋团队基因编辑技术研究新突破
过去3年,CRISPR基因编辑技术成为生命科学领域的最热门研究,因为利用这种简单的手段,科学家可以方便地对感兴趣的基因进行编辑,使基因编辑从过去高大上的尖端技术变成科学家的常用武器,也给人类基因疾病的治疗带来希望。利用这种技术,科学家已经先后成功对多种细胞,包括人类胚胎细胞进行了基因编辑。由于这种技术的简单方便,一些业余的生命科学研究爱好者都开始使用这种技术进行基因改造。几乎所有人都认为,CRISPR基因编辑技术是最有希望问鼎诺贝尔化学奖的研究。不过作为一种新技术,仍然存在一些缺陷和不足,也就是说仍然有改进的潜力。
美国著名华裔科学家MIT张锋教授团队是该领域的领先小组之一,最近发表论文提供了一种更好的CRISPR基因编辑工具,他们根据生物进化理论,在细菌蛋白库中寻找更理想的DNA切割酶,获得了成功,使该技术超更简单、更便宜、更快、更准等方向上迈进一大步。
【8】Nature:张锋团队发布CRISPR新成果,开辟镰状细胞病治疗新途径
doi:10.1038/nature15521
来自Dana-Farber/波士顿儿童医院癌症及血液疾病中心的研究人员发现,改变一小段DNA可以避开镰状细胞病(SCD)背后的遗传缺陷。这一发布在Nature杂志上的新发现,为开发出一些基因编辑方法来治疗SCD和诸如地中海贫血等其他的血红蛋白疾病开辟了一条途径。
这一称作为增强子的DNA片段控制了分子开关BCL11A。这一开关反过来决定了红细胞是生成成人形式的血红蛋白(hemoglobin,在SCD中血红蛋白发生了突变),还是未受影响的、可以对抗镰状细胞突变效应的胎儿形式血红蛋白。其他的一些研究表明,胎儿血红蛋白升高的镰状细胞病患者病情较轻。
【9】Nature:张锋团队最新研究成果,CRISPR可启动任何基因!
doi:10.1038/nature14136
一项刊登在国际杂志Nature上的研究报告中,来自麻省理工的科学家们对目前最热门的基因编辑系统CRISPR/Cas9进行了改造,如今人们可以用这一技术在活细胞中有效启动任何基因。这个系统可以让科学家们更简便地研究不同基因的功能;改造后的CRISPR技术,可以快速对整个基因组进行功能筛选,帮助人们鉴定涉及特定疾病的基因。张锋等人在这项研究中就鉴定了让黑色素瘤细胞抵抗癌症药物的几个基因。
CRISPR原本是细菌抵御病毒感染的免疫体系。之前人们利用这个系统建立了基因编辑复合体,这个复合体包括Cas9酶和引导RNA。引导RNA结合到基因组的特定序列,告诉Cas9在哪里进行剪切。
【10】张锋Nature Medicine综述:基因编辑技术最新进展
doi:10.1038/nm.3793
人体内已命名的基因共有25000多条,目前已知一部分基因(3000)的突变会引起各类疾病。对于此类疾病的治疗,最本质的手段是通过一些方法将突变后的遗传物质矫正回原来的状态。这类方法被称为遗传疗法(genetic therapies)。目前最广泛的遗传疗法手段为:1. 以病毒载体感染方式引导的源基因导入;2. 以RNA干扰方式引导的目的基因表达下调。这些手段在治疗严重复合型免疫缺陷疾病(SCID)以及Wiskott-Aldrich综合征方面获得了成功。尽管如此,RNAi技术在应用的广泛性上还存在局限。
基因编辑技术(genome editing technologies)是针对DNA本身进行的操作手段。最近应用型基因编辑领域的”鼻祖”,美国麻省理工学院张锋教授等人发表在《Nature Medicine》杂志上的一篇综述详细介绍了这些技术的原理以及在临床上的应用前景。