基因时代
就找基因君

俄罗斯加入全球基因编辑行列

基因君

 

俄罗斯加入全球基因编辑行列

俄罗斯正在拥抱基因编辑。一项日前公布的1110亿卢布(约17亿美元)的联邦计划,旨在到2020年培育出10个基因编辑作物和动物新品种,到2027年再培育出另外20个新品种。

新西伯利亚市俄罗斯科学院(RAS)细胞学与遗传学研究所西伯利亚分所所长Alexey Kochetov对该研究项目表示欢迎。他表示,几十年来,俄罗斯的遗传学研究“长期资金不足”。上世纪90年代苏联解体后,俄罗斯的科研经费大幅下降,近年来仍然落后于其他大国——2017年,该国将国内生产总值的1.11%用于科研,而美国的这一比例为2.79%。

然而一些研究人员怀疑这些目标能否按时实现,并担心该计划无法解决他们面临的其他问题,比如过度的官僚主义。

目前尚不清楚这1110亿卢布是否包括在俄罗斯现有联邦民用科学预算中——2018年的预算是3640亿卢布,其中220亿卢布用于遗传学研究,或者是否在该预算之外。

该计划于今年4月宣布,随即引起了人们的兴趣,因为它表明,一些基因编辑产品将不受2016年通过的一项法律的约束。该法律禁止在俄罗斯种植转基因作物,除非用于研究目的。此前并不清楚基因编辑生物是否包括在禁令中。

2016年的法律将转基因作物描述为那些“不能由自然过程产生”的基因修饰生物。但新的项目将CRISPR-Cas9等基因编辑技术等同于传统育种方法——这些技术不需要插入外来脱氧核糖核酸。

RAS下属研究所的一位科学家表示,这意味着俄罗斯科学家迎来了可喜的一步,他们中的很多人之前曾为2016年法律中的不确定性而感到沮丧。

美国农业部和美国食品与药物管理局对基因编辑技术并没有严格的限制。相比之下,2018年7月,欧盟最高法院的一项裁决宣布,基因编辑作物与传统转基因生物一样需受到严格的监管。许多科学家表示,这将阻碍研究。

参与该政府项目的分子遗传学家Konstantin Severinov表示,俄罗斯在全球“CRISPR富矿带”中并没有被边缘化,这一点很重要。该项目的一个目标是降低俄罗斯对进口作物的依赖。

“尽管自认为是一个面包篮子,但俄罗斯在优良作物品种方面依然高度依赖进口,因此政府决定要做些什么。”Severinov说,“幸运的是,一些RAS成员成功证明了CRISPR-Cas9是一件好东西。”

该计划将大麦、甜菜、小麦和土豆这4种农作物列为优先作物。根据联合国粮农组织的数据,俄罗斯是世界上最大的大麦生产国,也是其他3种作物的主要生产国。

开发这些作物基因编辑版本的工作正在进行中。莫斯科拉斯研究所的科学家正在开发抗病品种的土豆和甜菜。圣彼得堡瓦维洛夫植物工业研究所和拉斯细胞学与遗传学研究所则在进行基因编辑研究,目的是让大麦和小麦更容易加工,也更有营养。

但俄罗斯科学家能否实现该计划的宏伟目标尚不清楚。Severinov曾将在俄罗斯的工作描述为“在没有水的游泳池里游泳”。他说,尽管帮助开发了这个项目,但它并没有消除在俄罗斯进行生命科学研究的“不人道的恶劣”条件,包括繁琐的手续和有限的资金供应。

美国斯托尔斯市康涅狄格大学植物科学家Yi Li表示,该项目的启动对俄罗斯和世界来说都是“一个重大举措”。他说,这可能促使中国加大对基因编辑技术的投资,并有助于激发美国对这类技术日益高涨的热情。“对欧洲国家来说,鉴于欧洲法院对基因编辑的裁决,这可能是一个非常有趣的进展。”他补充说。(生物谷Bioon.com)

 

Cell Death Dis:科学家发现调节肌肉细胞的新基因

基因君

2019年5月29日讯 /生物谷BIOON /——加拿大约克大学的科学家们发现了一组独特的基因,它们在肌肉细胞的基因表达和分化中发挥重要作用,这可能导致防止肌肉癌症的蔓延的新的治疗靶标。
研究人员分析了肌肉细胞中的基因网络,发现蛋白质Smad7和β-catenin在体内协同工作来调节肌细胞分化、生长和修复。当这些调节蛋白协调工作时,它们控制着正常基因表达的途径,从而产生正常的骨骼肌细胞。
Cell Death Dis:科学家发现调节肌肉细胞的新基因
图片来源:Cell Death & Disease
该研究发表在《Cell Death & Disease》上,表明一个Smad7和β-catenin复合物功能失调会导致肌细胞分化受损,这是一些软组织肿瘤的标志,如横纹肌肉瘤(RMS)。这种通常影响儿童的罕见癌症形成于软组织,主要是骨骼肌组织,有时也在中空器官中形成,如膀胱或子宫。
“在那些横纹肌肉瘤细胞中发生的事情是它们具有肌肉细胞样的特征,但不同的是,正常的肌肉细胞会停止分裂。”John McDermott说道。McDermott表示,从功能和表型来看,这些细胞看起来像肌肉细胞,但它们不会停止分裂,这就是为什么它们可以在身体的不同部位形成肿瘤
“我们的想法是这些细胞的分化程序出现缺陷的部分原因是这些细胞中的β-catenin复合物由于控制它的信号通路异常而被降解。”McDermott说道。”如果我们能使这些细胞的β-catenin和Smad7复合物稳定,我们可能会促使它们分化和停止增殖,这意味着我们可以阻止这些细胞形成肿瘤。”
这项研究是在约克市的肌肉健康研究中心进行的,这是加拿大的第一个此类研究。该中心关注的是骨骼肌对加拿大人整体健康和福祉的重要性。这一新的分子遗传学发现可能导致针对这些特定分子的癌症治疗策略。
该研究还为肌肉萎缩和癌症的治疗干预确定了新的分子靶点。
McDermott说:”除非你知道事物是如何正常工作的,否则很难找到任何特定的目标。因此,在评估癌细胞的异常功能之前,确定分子的正常功能是至关重要的。这样就可以对特定分子进行靶向治疗,从而发展药新疗法来治疗这种疾病,或者在某些情况下,可以使用已有的药物。”
该研究团队由博士生Soma Tripathi领导,成员包括研究助理和博士Tetsuaki Miyake,他们的研究重点是了解转录因子在组织特异性基因表达和分化中的作用。他们通过识别在肌肉发育过程中参与转录调控的DNA结合蛋白来实现这个目的。该研究还发现了新的肌肉再生调节因子,这也为制药行业开发新的治疗方法打开了大门,以解决正常但虚弱老年人群的肌肉流失问题。
Tripathi说:”肌肉再生是一个高度复杂的过程,受到多种转录因子的调控。转录因子本质上是一种蛋白质,通过与基因组内的特定基因结合,帮助打开或关闭基因。我们相信两个这样的转录因子–Smad7和β-catenin–在特定的肌肉发展和维修所需的基因表达模式中扮演着关键的角色。”(生物谷Bioon.com)
参考资料:

Soma Tripathi et al, Smad7:β-catenin complex regulates myogenic gene transcription, Cell Death & Disease (2019).DOI: 10.1038/s41419-019-1615-0

Nature:新型基因片段有望帮助开发抵御癌症和自身免疫性疾病的新型疗法

基因君

2019年6月11日 讯 /生物谷BIOON/ –近日,一篇发表在国际杂志Nature上的研究报告中,来自德州农工大学的科学家们通过研究发现,人类基因STING(干扰素基因的刺激子)的一小片段或是治疗自身免疫性疾病和癌症的关键。文章中,研究者发现,一种特定的蛋白质基序或能帮助科学家们开发新型药物,来抑制引发自身免疫性障碍的人类机体未知免疫反应。

Nature:新型基因片段有望帮助开发抵御癌症和自身免疫性疾病的新型疗法

图片来源:en.wikipedia.org

STING是一种特殊的蛋白质,其能在人类和其它动物机体中发送免疫反应的信号,文章中,研究者们发现了一种名为PLPLRT/SD的蛋白质基序,其是STING蛋白质末端附近的短链氨基酸序列,在开启机体免疫系统功能抵御病毒感染上扮演着至关重要的角色。TBK1是一种与多种疾病发病相关的蛋白激酶,比如额颞叶痴呆、某些癌症和诸如狼疮等自身免疫性疾病,研究者Li表示,我们在蛋白质STING中鉴别出了一种短链序列,其能够招募并激活TBK1,从而开启机体自身的免疫反应。

研究者发现,STING C末端尾部中的保守PLPLRT/SD蛋白质基序能够介导与TBK1的结合,这就阐明了STING和TBK1之间的一种直接的结合作用,对于STING介导的信号转导网络至关重要。研究者Li说道,我们的免疫系统就好像电路一样,STING的基序参与到了TBK1的激活中,从本质上来讲,其就好像开关一样,能够开启免疫系统的而功能,从而产生干扰素来抵御病毒感染和癌症等疾病的发生。

如今研究人员确定了TBK1结合STING的晶体结构,并详细阐明了这两种蛋白质之间的详细分子互作关系,研究者利用了一种强大的X射线收集到了高质量的衍射数据;相关研究结果或为研究人员开发STING结合剂和阻滞剂药物来治疗病毒感染、癌症和自身免疫性疾病提供一定基础,这似乎仅仅是基础研究中的一个小发现,但可能对未来人类多种疾病的治疗方式会产生很大的影响。

研究者Li表示,在制药行业,科学家们非常感兴趣寻找新方法来阻断TBK1的激活,从而控制并不需要的有害免疫反应。最后研究者表示,我们从事的是基础性的研究,而其他研究人员将会基于我们的研究结果进行更多应用性的研究,目前仍然有很多是未知的,但本文研究结果对于后期我们开发治疗癌症、自身免疫性疾病等多种人类疾病具有非常重要的意义。(生物谷Bioon.com)

原始出处:

Baoyu Zhao, Fenglei Du, Pengbiao Xu, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1, Nature (2019). DOI:10.1038/s41586-019-1228-x

质粒介导的抗生素抗性基因的环境扩散研究获进展

基因君

质粒介导的抗生素抗性基因的环境扩散研究获进展
人类病原菌中抗生素抗性水平的升高给全球人类的健康带来了巨大的威胁。由于可用药物不能有效杀死耐药性致病菌,全球每年约70万人死于耐药菌感染。除了临床环境,土壤中检测到的抗生素抗性基因的多样性和丰度也在不断攀升。
与以往环境领域所关注的重金属、有机污染物等不同,抗生素抗性基因这一新型污染物不仅能在宿主细菌中伴随细菌增殖而增加丰度,还会通过基因突变和基因水平转移增加多样性、宿主范围及丰度。质粒接合是基因水平转移的三大机制之一,其所携带的全部基因在接合过程中复制增加,使原宿主及受体都拥有这些基因,因此在推动抗生素抗性基因的环境扩散乃至病原菌扩散中起着重要作用。
在国家科技攻关项目和国家自然科学基金项目等的资助下,中国科学院城市环境研究所朱永官研究团队借助荧光蛋白基因标记追踪了携带抗性基因的广宿主质粒RP4及其宿主细菌Pseudomonas putida KT2442在土壤原位环境中的动态变化。长达75天的土壤培养试验中,荧光基因标记的质粒能在土壤中长期存留,并在培养初期即与土壤原生菌群发生了水平转移,且接合子菌种丰富,超过15个门。随着培养时间延长,质粒的转移效率增加,转移范围扩大。变形菌门在接合子中占绝对优势,同时质粒也水平转移到亲缘关系较远的菌种中。一些潜在病原菌如金黄色葡萄球菌在接合子中亦有检出。该研究揭示了抗生素抗性基因通过质粒快速且向更广泛的宿主扩散的潜在风险。
此项研究结果以Fate of Antibiotic Resistant Pseudomonas putida and Broad Host Range Plasmid in Natural Soil Microcosms 为题发表在国际微生物学期刊Frontiers in microbiology上,城市环境所博士研究生范晓婷为第一作者,研究员苏建强为通讯作者。(生物谷Bioon.com)

探访中国农作物基因资源与基因改良重大科学工程项目

基因君

 

探访中国农作物基因资源与基因改良重大科学工程项目

位于北京市海淀区中关村南大街12号中国农业科学院院内的作物科学研究所重大科学工程楼,即使是在建成16年后的今天,外表看起来也颇为壮观。

鲜为人知的是,这里拥有着世界先进、国内领先的作物基因资源与基因改良研究核心设施和技术平台。

植物育种是一个缓慢的过程。使用传统的育种技术开发新的作物——抗旱、抗病、产量更高、营养更丰富,可能需要10年或更长时间。

随着更便宜、更强大技术——现代育种方法的出现,快速改良全球作物的机会之门被打开。

基因支持着生命的基本构造及其具备的功能,记录和储存着生命从物种演化到个体生长发育的遗传变异的全部信息。

“‘中国农作物基因资源与基因改良重大科学工程项目’是我国农业和生物领域第一个国家重大科学工程,是我国农业科学基础研究与应用基础研究领域能力建设的重大进步和标志性工程。”中国工程院院士、中国农业科学院副院长万建民接受科技日报记者专访时表示。

“我国是世界上农作物基因资源最丰富的国家之一,保存数量居世界第二位,遗传多样性十分丰富,其中蕴藏着大量的、具有重大应用前景的功能基因。”万建民说。

由中国农业科学院承建的“中国农作物基因资源与基因改良重大科学工程项目”(以下简称“重大科学工程”)首要任务就是要建设世界一流的、大规模、高效率进行作物基因资源与基因改良研究的现代化设施平台与技术平台。

“这个平台包括高质量文库构建、分子标记和遗传多样性研究平台,快速、准确、高效进行种质资源基因鉴定平台,基因克隆与功能研究平台,快速、高效的分子育种平台和生物信息平台等。迄今为止,‘重大科学工程’中已有50万元以上应对外开放大型科研仪器51台(套),50万元以下可对外开放的仪器数量140台(套)。比如,中国农业科学院作物科学研究所研发了科研仪器共享平台运行管理系统,包括仪器设备预约、DNA测序管理、科研试剂耗材采购3个子系统。”万建民说。

利用这些设施与技术平台,“重大科学工程”累计为全国27个省、自治区、直辖市的223家科研院所、大专院校及企业提供技术服务150万份次,累计支撑465个各级各类科技计划(项目/课题)的研究,提供专业技术培训285次累计6200人次。

“依托‘重大科学工程’,研究人员分离克隆了生育期、育性、株型、适应性、养分高效利用等重要性状基因,明确其功能及表达调控网络,为育种提供了基因和材料。比如,解析了水稻株型调控与抗褐飞虱的分子机制;解析了3000份水稻核心种质资源的基因组变异等。”万建民说。

在此基础上,研究人员创新农作物种质资源精准鉴定、杂种优势利用、转基因育种、基因编辑等核心技术,获得优质节水小麦、矮败小麦、抗病水稻、杂交玉米、高产大豆、转基因抗虫棉、高产抗虫三系杂交棉、转植酸酶基因玉米、转基因抗虫玉米、耐除草剂大豆等标志性成果。

这些成果推广使用后,田间表现十分优异。“重大科学工程”主持培育小麦、玉米、大豆、水稻等作物新品种184个,其中国审(认、鉴)品种42个,年推广应用面积2000多万亩。

“中麦175分别创造北部冬麦区水地及陕西省和甘肃省旱地高产纪录;中麦895曾两次创造陕西省水地高产纪录;中黄13大豆品种已连续9年稳居全国大豆年种植面积之首,累计推广面积1亿多亩……”万建民如数家珍。

在创造纪录的同时,这些新品种也创造了巨大的社会经济效益。

中麦175累计推广约4000万亩,社会经济效益35亿元;绿豆新品种中绿3号、中绿4号、中绿5号,据不完全统计,近4年在18个省份累计种植1620.5万亩,增产2.7亿公斤,增收超25亿元……

万建民表示,“重大科学工程”意义重大,使我国具备了世界水平的大规模、高通量和高效率开展农作物基因资源与基因改良研究的现代化设施,更使我国农作物基因资源与基因改良研究跻身世界前列。(生物谷Bioon.com)

 

Science:利用基因共同进化揭示蛋白相互作用网络

基因君


2019年7月14日讯/生物谷BIOON/—对基因组进行测序变得越来越便宜,但是对所产生的数据的理解仍然很难。如今,在一项新的研究中,来自美国华盛顿大学和哈佛大学的研究人员找到了一种从已被测序的DNA中提取有用信息的新方法。通过对细菌中成对基因之间共享的细微进化特征进行编目,他们够发现数百种之前未知的蛋白相互作用。这种方法当前正应用于人类基因组,并且可能产生关于人类蛋白如何相互作用的新见解。相关研究结果发表在2019年7月12日的Science期刊上,论文标题为“Protein interaction networks revealed by proteome coevolution”。

Science:利用基因共同进化揭示蛋白相互作用网络
图片来自Institute for Protein Design。

论文通讯作者、华盛顿大学医学院生物化学教授David Baker说道,“蛋白-蛋白相互作用是生物功能的基础。如今能够使用近年来产生的大量基因组序列数据来预测它们,这是非常了不起的。”

细胞中充满着蛋白,其中的许多蛋白必须在物理上相互作用才能发挥作用。这意味着它们聚集在一起复制DNA,或者形成长纤维,就像在肌肉中发现的那样。然而,在许多情况下,科学家们仍然不知道哪些蛋白会相互作用。发现新的配对(即彼此间能够相互作用的蛋白)可能是缓慢的、费力的和成本高昂的。

为了寻找一种更好的方法,这些研究人员研究了一种称为共同进化(co-evolution)的现象,即一个基因的变化与另一个基因的变化相关联。这可以表明这两个基因以某种重要方式连锁在一起。比如,如果一个基因发生突变后产生一种形状发生变化的蛋白,那么第二个基因可能经进化后产生在形状上与这种蛋白互补的蛋白,从而保持这两种蛋白相互作用的能力。

近年来,科学家们在有机体的DNA中发现了一些微妙的分子相互作用的证据。论文第一作者、华盛顿大学医学院博士后研究员Qian Cong说道,“共同进化对于理解特定的蛋白如何相互作用非常有用,但是如今我们能够利用它作为一种用于发现的工具。”

这些研究人员将来自大肠杆菌的4000多个基因与来自40000多个其他细菌基因组的DNA序列进行了比较。这些大量的遗传信息允许他们能够使用定制的统计模型来评估每个大肠杆菌基因之间的共同进化。经过几轮分析,他们发现1618种蛋白-蛋白相互作用具有共同进化的最强证据。通过将他们的研究结果与一小部分已被表征的蛋白-蛋白相互作用进行比较,他们获得了比以前的实验筛选方法更高的准确性。

在这些新发现的蛋白-蛋白相互作用中,有一些相互作用可能提供新的生物学见解。这些研究人员推测作为其中之一的相互作用,蛋白毒素与它的抗毒素之间的相互作用可能有助于解释为何一些大肠杆菌在它们所在的微生物生态位中占据主导地位。另一种新发现的蛋白-蛋白相互作用表明一种已知在代谢中发挥作用的称为PstB的蛋白也可能有助于协调蛋白合成和矿物质运输。

Cong说道,“在生物学中,很少有软件工具能够做出足够有希望进行测试的预测,但这正是这项研究中发生的事情。数百项后续实验可能正在开展着。”

这些研究人员还搜索了结核分枝杆菌—一种与大肠杆菌亲缘关系较为疏远的致病细菌—的基因组。他们高度自信地鉴定出911种蛋白-蛋白相互作用,其中的95%之前从未被描述过。他们报道70种相互作用可能涉及与结核分枝杆菌的毒力相关的蛋白。这些发现可能为开发靶向这种致命性的病原菌的药物开辟了新途径。

Cong说道,“我们将把这种工具应用于更多的病原体,以及人类基因组。我们的成功将取决于其他科学家在注释基因组的哪些部分是基因哪些部分是除基因之外的其他东西方面投入了多少研究工作。”(生物谷 Bioon.com)

参考资料:


Qian Cong et al. Protein interaction networks revealed by proteome coevolution. Science, 2019, doi:10.1126/science.aaw6718.


Patterns in DNA reveal hundreds of unknown protein pairings

Nat Commun:首次利用CRISPR从活动物基因组中清除HIV

基因君

2019年8月22日讯 /生物谷BIOON /——坦普尔大学刘易斯·卡茨医学院(LKSOM)和内布拉斯加大学医学中心(UNMC)的研究人员进行了一次重大合作,首次从活动物的基因组中消除了可复制的HIV-1 DNA,这是一种导致艾滋病的病毒。这项研究于近日在线发表在《Nature Communications》杂志上,它标志着人类艾滋病病毒(HIV)感染可能治愈的关键一步。
“我们的研究显示,先后进行抑制艾滋病毒复制的治疗和基因编辑疗法可以从感染动物的细胞和器官中消除艾滋病毒。” Kamel Khalili博士说道,他是LKSOM的Laura H. Carnell教授、神经科学系主任、神经病毒学中心主任、综合神经艾滋病中心主任。Khalili博士和传染病和UNMC内科教授、药理学和实验神经科学系主任、神经退行性疾病中心主任Howard Gendelman博士是这项新研究的通讯作者。
Nat Commun:首次利用CRISPR从活动物基因组中清除HIV
图片来源;Nature Communications
Gendelman博士说:”如果没有病毒学家、免疫学家、分子生物学家、药理学家和药学专家的共同努力,这项成就是不可能实现的。只有把我们的资源集中起来,我们才能做出这一突破性的发现。”
目前的艾滋病毒治疗侧重于使用抗逆转录病毒治疗(ART)。抗逆转录病毒疗法抑制艾滋病毒的复制,但不能将病毒从体内消除。因此,抗逆转录病毒治疗不能治愈艾滋病毒,需要终生使用。如果停止,艾滋病毒就会反弹,重新复制并促进艾滋病的发展。艾滋病毒的反弹直接归因于病毒将其DNA序列整合到免疫系统细胞基因组中的能力,病毒在免疫系统中处于休眠状态,抗逆转录病毒药物无法触及。
在之前的工作中,Khalili博士的团队使用CRISPR-Cas9技术开发了一种新的基因编辑和基因治疗传递系统,旨在从HIV病毒的基因组中去除DNA。在大鼠和小鼠中,他们发现基因编辑系统可以有效地从感染细胞中去除大量的HIV DNA片段,显着影响病毒基因的表达。然而,与ART类似,基因编辑本身不能完全消除艾滋病毒。
在这项新研究中,Khalili博士和同事们将他们的基因编辑系统与最近开发的一种名为长效缓释(激光)技术的治疗策略相结合。激光技术是由Gendelman博士和UNMC药理学助理教授Benson Edagwa博士共同开发的。
激光抗逆转录病毒治疗以病毒避难所为目标,在较长时间内维持低水平的艾滋病毒复制,从而降低抗逆转录病毒治疗的频率。由于抗逆转录病毒药物的化学结构发生了药理学上的变化,这些长效药物得以问世。这种经过修饰的药物被包装成纳米晶体,纳米晶体很容易分布到HIV可能潜伏的组织中。从那里,储存在细胞内数周的纳米晶体慢慢释放药物。
Khalili博士说,”我们想看看激光疗法是否能够在足够长的时间里抑制艾滋病毒复制,使CRISPR-Cas9完全清除细胞中的病毒DNA。”
为了验证他们的想法,研究人员用老鼠来制造易受HIV感染的人类T细胞,允许长期的病毒感染和ART诱导的潜伏期。一旦感染被确定,小鼠接受激光治疗,随后使用CRISPR-Cas9治疗。在疗程结束时,对小鼠进行病毒载量检测。分析显示,大约三分之一的感染艾滋病毒的小鼠体内的艾滋病毒DNA完全消失。
“这项工作的主要信息是,它需要CRISPR-Cas9和通过激光ART等方法抑制病毒,同时使用才能产生治疗艾滋病毒感染的方法,”Khalili博士说。”我们现在有了一条清晰的道路,可以在一年内在非人类灵长类动物身上进行试验,也可能在人类患者身上进行临床试验。”(生物谷Bioon.com)
参考资料:

Howard E. Gendelman et al. Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice, Nature Communications (2019). DOI: 10.1038/s41467-019-10366-y

Science子刊:揭示出一种B细胞基因表达特征与疫苗抵抗HIV感染相关

基因君


2019年9月3日讯/生物谷BIOON/—在一项新的研究中,来自美国沃尔特里德陆军研究所等研究机构的研究人员在五项独立的HIV-1候选疫苗临床试验中鉴定出一种与免受SIV或HIV感染相关的B细胞转录特征。他们发现这种基因表达特征与唯一的一项之前已显示有适度功效的人类HIV疫苗RV144的临床试验中免受HIV感染相关。相关研究结果近期发表Science Translational Medicine期刊上,论文标题为“A vaccine-induced gene expression signature correlates with protection against SIV and HIV in multiple trials”。

Science子刊:揭示出一种B细胞基因表达特征与疫苗抵抗HIV感染相关
关于受HIV感染的T细胞的扫描电镜图,图片来自NIAID。

这种基因表达特征和特异性基因之前已被证实是由在人类中进行流感和黄热病疫苗接种诱导出来的。论文通讯作者、沃尔特里德陆军研究所美军艾滋病毒研究计划(U.S. Military HIV Research Program, MHRP)宿主基因组学主任Rasmi Thomas博士说,“我们认为这种B细胞特征是疫苗接种后有效反应产生的一个广泛指标,可能有助于设计有效的针对HIV和其他病原体的疫苗。”从更广泛的角度讲,Thomas说,这项研究中使用的RNA测序(RNA-Seq)方法可被证明是一种在其他临床试验和临床前试验中发现保护性相关因素的有价值工具。

这些研究人员研究了来自HIV-1候选疫苗临床前试验的RNA-Seq数据。他们猜测在这些临床前研究中观察到的部分功效可能是由于试验性疫苗引起的宿主基因表达变化。通过在HIV临床试验中首次使用称为RNA-Seq的新一代测序方法,他们在非人类灵长类动物中观察到了一种共同的保护性基因特征。

接下来,这些研究人员研究了这种B细胞特征是否与唯一的一项已表现出适度功效的人体HIV疫苗(RV144)临床试验中免受HIV感染相关联。这项临床试验是由MHRP与其合作伙伴在泰国共同开展的。RV144使用了一种与非人类灵长类动物研究中使用的完全不同的疫苗Pox-蛋白方案。

这种与临床前研究中的免受SIV感染相关的B细胞特征也与RV144人体疫苗功效临床试验以及MHRP开发的另外2种Pox-蛋白疫苗中的免受HIV感染相关。这种B细胞特征还与更高水平的功能性抗病毒抗体反应—称为抗体依赖性细胞吞噬作用(antibody-dependent cellular phagocytosis, ADCP)—相关,这有助揭示HIV疫苗RV144为何具有保护作用。

当谈及这些研究发现时,Thomas说,“我们很兴奋,这是因为这种鉴定出的基因特征与目前正在非洲开展的人体功效临床试验— Imbokodo临床试验和HVTN702临床试验—中测试的两种疫苗方案的保护性功效相关。这种新的保护性相关因素提供了为何以前的疫苗提供部分保护的线索,并可能有助于了解在这些新的临床研究中发挥功效的机制。”(生物谷 Bioon.com)

参考资料:

1.Philip K. Ehrenberg et al. A vaccine-induced gene expression signature correlates with protection against SIV and HIV in multiple trials. Science Translational Medicine, 2019, doi:10.1126/scitranslmed.aaw4236.

2.New sequencing study provides insight into HIV vaccine protection
https://medicalxpress.com/news/2019-08-sequencing-insight-hiv-vaccine.html

Nat Commun:癌症——基因突变的起源

基因君


2019年9月26日 讯 /基因宝jiyinbao.com/ — DNA的复制是细胞分裂的前提。但是,在存在某些破坏性成分的情况下,细胞将无法很好地执行相关操作,复制过程将变得更加缓慢且效率较低,这种现象称为“复制压力”。虽然已知“复制压力”与遗传突变的增加有关,但至今仍不清楚起作用的确切机制。

最近,日内瓦大学(UNIGE)的研究人员阐明了在“复制压力”下癌细胞在复制过程中染色体出现丢失或增加的情况,这与发现将有助于癌症的治疗。相关结果发表在《Nature Communications》杂志上。

DNA复制完成后,细胞进入有丝分裂状态,然后出现纺锤体结构。“为了确保染色体的正确分布,有丝分裂纺锤体有两个极点,” UNIGE医学系细胞生理学和代谢系教授Patrick Meraldi说:“这种双极化对于两个子细胞的基因组稳定性是必要的。”
Nat Commun:癌症——基因突变的起源
(图片来源:Www.pixabay.com)
为了破译癌细胞“复制压力”这种现象,研究人员人为地诱导了健康人类细胞中复制的压力,进而减慢DNA复制的速度。 “我们发现,这种压力会导致有丝分裂纺锤体畸形,出现三个或四个以上的极点。细胞通常能够去除这些多余的极点,但由于速度不够快,因此染色体会出现与纺锤体产生错误连接。”这些错误的连接会导致染色体分布不均匀,从而导致一个或多个染色体的丢失或增加。

然后,科学家们通过为患病细胞提供复制所需的缺失成分,成功纠正了复制压力对患病细胞的影响。研究人员Anna-Maria Olziersky报告说:“我们不仅建立了复制压力与染色体错误之间的联系,而且还能够主动纠正这一错误,表明存在于所有癌症甚至癌前细胞中的这种现象都是可控的。”(生物谷Bioon.com)


原始出处:
Therese Wilhelm, Anna-Maria Olziersky, Daniela Harry, Filipe De Sousa, Helène Vassal, Anja Eskat, Patrick Meraldi. Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-11584-0

研究发布首个高质量染色体水平的哀牢髭蟾参考基因组

基因君

研究发布首个高质量染色体水平的哀牢髭蟾参考基因组

 

哀牢髭蟾(Vibrissaphora ailaonica)[Amphibiaweb(2019),Frost(2019)和中国两栖类(2019)将其归为Leptobrachium ailaonicum的同物异名] 俗称“胡子蛙”、“深山角怪”,属两栖纲、无尾目、角蟾科,是中国特有种。该物种具有多个特化的表型,如繁殖季节时,性成熟的雄性哀牢髭蟾的上颚会长出角化的婚刺,繁殖季节结束时脱落。此外,一般情况下,两栖类物种雌性个体显着大于雄性,而哀牢髭蟾的雄性个体却显着大于雌性(体型性别二型性的逆转)。上颚的婚刺可能是性成熟个体争夺巢穴和交配机会的武器;而资源防御、一夫多妻制和雄性亲代照料等可能是雄性体型较大的原因。然而,这些形态差异背后的遗传机制目前仍不清楚。一个高质量的哀牢髭蟾的参考基因组将对研究角化刺和体型性别二型性逆转背后的遗传机制有重要价值。

中国科学院昆明动物研究所副研究员饶定齐和王文课题组合作,运用三代长读长测序技术(PacBio),结合高通量染色体构象捕获(Hi-C)技术,成功地组装了第一个高质量的染色体水平的哀牢髭蟾基因组。该基因组大小为3.53Gb,其中contig N50长度为821 Kb,scaffold N50长度为412.42Mb。研究人员对蛋白编码基因进行了鉴定和注释。系统发育分析表明,哀牢髭蟾与海蟾蜍、牛蛙、高山倭蛙等亲缘关系较近。并且,与该研究的其它大多数近缘物种相比,哀牢髭蟾有着更快的进化速率。基因家族的扩张和收缩分析确定了几个生物学过程和通路,如免疫途径、角蛋白丝和代谢过程,提示这些生物学过程可能与哀牢髭蟾对其栖息地的特殊适应有关。

该工作不仅为更广泛的比较基因组分析提供了有价值的染色体水平基因组数据,而且为哀牢髭蟾特殊性状的功能研究提供了重要的基因组数据。

该研究以Chromosome-level assembly of the mustache toadgenome using third-generation DNA sequencing andHi-C analysis为题,于9月23日在GigaScience上发表。

昆明动物所博士生李永鑫为文章的第一作者,博士生任彦栋与助理研究员张栋儒为文章的共同第一作者,饶定齐为文章的通讯作者。该研究得到国家重点研究开发项目和国家自然科学基金项目资助。(生物谷Bioon.com)

 

健康一生

apasstour 医健游测序宝