2016年3月3日/生物谷BIOON/–在一项新的研究中,来自美国德州理工大学健康科学中心的研究人员开发出一种提高CRISPR基因编辑效率的方法,其中CRISPR是一种日渐重要的用来编辑DNA的技术。相关研究结果近期发表在Genome Biology期刊上,论文标题为“Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency”。论文通信作者是Haoquan Wu博士。他是德州理工大学健康科学中心的一名生物医学家。
Wu说,“全世界的科学家们如今正在他们的研究中使用CRISPR,但是这种技术的功能性并不像是它应当那样的那么好。”
CRISPR是一种突破性的允许科学家们对基因进行修饰的技术。两种关键性的组分让CRISPR的DNA编辑能力成为可能。第一种组分是Cas9,即一种能够切割DNA的酶。第二种组分是单向导RNA(single guide RNA, sgRNA),它精确地引导Cas9在一种DNA序列上进行切割从而让不需要的片段失活。
然而,作为一种新技术,CRISPR仍然还有改善的空间。这种技术剔除或敲除基因的能力并不是始终一致的。这些问题促使Wu想知道他是否能够提高CRISPR作用于靶基因并将其移除的整体能力。为此,他想看看改变sgRNA的结构是否能够让这种技术变得更好。
在这项新的研究中,Wu和他的研究小组描述了他们如何能够通过调整sgRNA模板的序列让基于CRISPR的基因敲除能力提高了50%。他们特异性地将sgRNA延长大约5个碱基对(bp),同时也将sgRNA中的一串胸腺嘧啶(T)的第四个碱基T突变为胞嘧啶(C)或鸟嘌呤(G)。
Wu说,“通过这些优化,基因敲除效率提高的程度是显著性的。这将有助降低基因敲除实验可能并不成功的担忧,而且也显著增加更多充满挑战性的诸如基因剔除之类的基因编辑方法的效率。”
Wu和他的研究小组计划继续研究这种经过修饰的sgRNA模板以便更好地理解它为何提高CRISPR的基因编辑功能。他们已经将这种新的方法申请了专利。(生物谷 Bioon.com)
本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP。
Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency
Ying Dang, Gengxiang Jia, Jennie Choi, Hongming Ma, Edgar Anaya, Chunting Ye, Premlata Shankar and Haoquan WuEmai
Background
Single-guide RNA (sgRNA) is one of the two key components of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome-editing system. The current commonly used sgRNA structure has a shortened duplex compared with the native bacterial CRISPR RNA (crRNA)–transactivating crRNA (tracrRNA) duplex and contains a continuous sequence of thymines, which is the pause signal for RNA polymerase III and thus could potentially reduce transcription efficiency.
Results
Here, we systematically investigate the effect of these two elements on knockout efficiency and showed that modifying the sgRNA structure by extending the duplex length and mutating the fourth thymine of the continuous sequence of thymines to cytosine or guanine significantly, and sometimes dramatically, improves knockout efficiency in cells. In addition, the optimized sgRNA structure also significantly increases the efficiency of more challenging genome-editing procedures, such as gene deletion, which is important for inducing a loss of function in non-coding genes.
Conclusions
By a systematic investigation of sgRNA structure we find that extending the duplex by approximately 5 bp combined with mutating the continuous sequence of thymines at position 4 to cytosine or guanine significantly increases gene knockout efficiency in CRISPR-Cas9-based genome editing experiments.