基因时代
就找基因君

三篇Nature文章揭示CRISPR/Cas9基因组编辑取得重大进展

三篇Nature文章揭示CRISPR/Cas9基因组编辑取得重大进展

2016年4月21日/生物谷BIOON/–大多数人类遗传病是由于点突变—DNA序列上的单个碱基错误—导致的。然而,当前的基因组编辑方法不能够高效地校正细胞中的这些突变,而且经常导致随机的核苷酸插入或删除(insertions or deletion, indel)。

如今,在一项新的研究中,来自美国哈佛大学的研究人员对CRISPR/Cas9技术进行改进,构建出一种新的“碱基编辑器(base editor)”,并且避免这些问题的发生。在人细胞系和小鼠细胞系中,这种碱基编辑器永久性地和高效地将碱基胞嘧啶(C)转化为碱基尿嘧啶(U),同时具有较低的编辑错误发生率。相关研究结果于2016年4月20日在线发表在Nature期刊上,论文标题为“Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage”。

美国加州大学伯克利分校基因组学创新计划科学主任Jacob Corn(未参与者这项研究)说,“在人体的任何一个地方,都有大量的遗传病存在,这些遗传病本质上是由于碱基换入或换出。”

在此之前,CRISPR/Cas9基因组编辑方法一直依赖于一种被称作同源重组修复(homology-directed repair)的细胞机制,其中这种修复是由基因组DNA上的双链断裂触发的。科学家们给细胞导入一种含有目标序列的DNA模板,并利用酶Cas9在这种细胞的基因组靶位点上进行切割,导致基因组发生双链断裂,然后等待一段时候后观察这种同源重组修复是否将这种模板整合到基因组中,将双链重新连接在一起。不幸的是,这种方法是低效率的(整合很少发生),而且经常在断裂点附近以随机indel的形式引入新的碱基错误,从而使得它不适合用于点突变的治疗性地校正。

因此,在哈佛大学化学家和化学生物学家David Liu的领导下,研究人员尝试了一种不同的方法。首先,他们让Cas9部分失活,使得它不能够在细胞基因组上产生双链断裂。他们然后让Cas9与一种被称作胞苷脱氨酶的酶偶联在一起,这样就可在不用切割DNA的情形下,直接催化C变成U(本质上等同于胸腺嘧啶T)。将这种偶联物导入细胞中,会在细胞基因组靶位点上产生一对错配的碱基对:一条链上新产生的U与另一条链上初始碱基G错配。Liu解释道,“这种[错配]让DNA发生扭曲。它在DNA上产生一个有趣的但看起来并不正常的小凸起。”

这种凸起触发一种不同的细胞修复机制,即错配修复,这个修复机制移除错配碱基对(U-G)中的一个,然后用与剩下的碱基互补的碱基进行替换。在不知道哪个碱基是正确的情形下,错配修复产生所需的G→C转换的概率是50%,另外,U→C转换的概率也是50%。

但是当模板信息可获得时,错配修复确实还会进一步整入这种信息:它检测到DNA骨架上被称作缺口的小片段断裂。Liu说,“细胞已进化出错配修复机制来优先考虑旧有的DNA链而不是新合成的DNA链。新合成的DNA链往往存在一些缺口。因此,我们有理由相信我们可能能够操纵错配修复来偏好地校正我们不想要的DNA链,也就是含有G的那条DNA链。”

研究人员为此再次对Cas9进行基因改造,这次改造的目的在于让它能够在不进行基因编辑的含G的DNA链上产生缺口,同时让需要进行基因编辑的含U的DNA链保持完整。Liu说,“这时,细胞会说,‘哈,这里存在一个碱基错配,发生错误的碱基肯定是G,这是因为含G的DNA链存在缺口,而被细胞认为是新合成的DNA链。’它将偏好地对碱基G进行校正,同时校正时利用另外一条链作为模板。”

通过在人细胞的基因组中的6个位点上使用这种技术,研究人员报道,正确的碱基校正率高达37%,同时只有1%左右的序列发生indel。相反,在其中的三个位点上,利用正常的Cas9编辑技术进行测试,正确的校正率不到1%,而且4%以上的序列发生indel。研究人员还利用这种技术在小鼠细胞中将与阿尔茨海默病相关联的APOE基因的一个高风险变异体转换为低风险的基因版本,证实了这个技术校正疾病相关性突变的潜力。

Corn说,“通过对这种Cas9进行基因改造,他们找到一个非常好的方法诱骗细胞偏好选择它通常并不偏好选择的修复途径。”然而,他提醒道,由于这种方法当前只能够将碱基对C-G转化为U-A(亦即T-A),而且在一些情形下,它还会对与靶位点靠得很近的其他碱基C进行编辑,“因此,它当然不是灵丹妙药。这并不意味着你如今能够治疗每种遗传病。但是很可能将有不少遗传病可利用这种方法加以治疗。”

英国牛津大学Tudor Fulga将这种技术称为“一种构思非常巧妙的想法”,可以规避低效率的同源重组修复和降低不想要的indel产生。他告诉《科学家》杂志,“我认为这将会在这个领域引发观念转变。这种基于Cas9的碱基编辑方法很可能会产生非常巨大的影响,不论是在解答基础研究问题的情形下,还是在基于基因组改造的治疗应用方面。”

与此同时,还有两篇文章同一天出现在线Nature期刊上。这两篇文章都涉及Cas9的一种潜在替代者:Cpf1酶。CRISPR/Cpf1在细胞基因组靶位点上进行切割,产生“粘性末端(sticky end)”—切割的DNA上存在的突出末端,在DNA双链断裂位点的两边留下未配对的碱基—而不是利用Cas9切割DNA双链产生的平头末端(blunt end)。

在其中的一篇文章中,来自德国马克斯普朗克感染生物学研究所的Emmanuelle Charpentier和同事们证实不同于Cas9,Cpf1除了切割DNA外,还对RNA进行加工。相关研究于2016年4月20日在线发表在Nature期刊上,论文标题为“The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA”。

在另外一篇文章中,来自中国哈尔滨工业大学生命科学与技术学院的黄志伟(Zhiwei Huang)教授和同事们解析出CRISPR/Cpf1的晶体结构。相关研究于2016年4月20日在线发表在Nature期刊上,论文标题为“The crystal structure of Cpf1 in complex with CRISPR RNA”。

黄教授告诉《科学家》杂志,“在细胞中进行DNA修复时,粘性末端要比[平头末端]更加高效。我们认为[理解] Cpf1的结构将有助我们不仅知道Cpf1的工作机制,而且也有助设计更加特异性的和更加高效的基因组编辑工具。”(生物谷 Bioon.com)

本文系生物谷原创编译整理,欢迎转载!点击 获取授权 。更多资讯请下载生物谷APP

Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage

doi:10.1038/nature17946

Alexis C. Komor, Yongjoo B. Kim, Michael S. Packer, John A. Zuris & David R. Liu

Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction1, 2. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks1, 2. Here we report the development of ‘base editing’, a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C→T (or G→A) substitution. The resulting ‘base editors’ convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of ~15–75% of total cellular DNA with minimal (typically ≤1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations.

The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA

doi:10.1038/nature17945

Ines Fonfara, Hagen Richter, Majda Bratovi?, Ana?s Le Rhun & Emmanuelle Charpentier

CRISPR–Cas systems that provide defence against mobile genetic elements in bacteria and archaea have evolved a variety of mechanisms to target and cleave RNA or DNA1. The well-studied types I, II and III utilize a set of distinct CRISPR-associated (Cas) proteins for production of mature CRISPR RNAs (crRNAs) and interference with invading nucleic acids. In types I and III, Cas6 or Cas5d cleaves precursor crRNA (pre-crRNA)2, 3, 4, 5 and the mature crRNAs then guide a complex of Cas proteins (Cascade-Cas3, type I; Csm or Cmr, type III) to target and cleave invading DNA or RNA6, 7, 8, 9, 10, 11, 12. In type II systems, RNase III cleaves pre-crRNA base-paired with trans-activating crRNA (tracrRNA) in the presence of Cas9 (refs 13, 14). The mature tracrRNA–crRNA duplex then guides Cas9 to cleave target DNA15. Here, we demonstrate a novel mechanism in CRISPR–Cas immunity. We show that type V-A Cpf1 from Francisella novicida is a dual-nuclease that is specific to crRNA biogenesis and target DNA interference. Cpf1 cleaves pre-crRNA upstream of a hairpin structure formed within the CRISPR repeats and thereby generates intermediate crRNAs that are processed further, leading to mature crRNAs. After recognition of a 5′-YTN-3′ protospacer adjacent motif on the non-target DNA strand and subsequent probing for an eight-nucleotide seed sequence, Cpf1, guided by the single mature repeat-spacer crRNA, introduces double-stranded breaks in the target DNA to generate a 5′ overhang16. The RNase and DNase activities of Cpf1 require sequence- and structure-specific binding to the hairpin of crRNA repeats. Cpf1 uses distinct active domains for both nuclease reactions and cleaves nucleic acids in the presence of magnesium or calcium. This study uncovers a new family of enzymes with specific dual endoribonuclease and endonuclease activities, and demonstrates that type V-A constitutes the most minimalistic of the CRISPR–Cas systems so far described.

The crystal structure of Cpf1 in complex with CRISPR RNA

doi:10.1038/nature17944

De Dong, Kuan Ren, Xiaolin Qiu, Jianlin Zheng, Minghui Guo, Xiaoyu Guan, Hongnan Liu, Ningning Li, Bailing Zhang, Daijun Yang, Chuang Ma, Shuo Wang, Dan Wu, Yunfeng Ma, Shilong Fan, Jiawei Wang, Ning Gao & Zhiwei Huang

The CRISPR–Cas systems, as exemplified by CRISPR–Cas9, are RNA-guided adaptive immune systems used by bacteria and archaea to defend against viral infection1, 2, 3, 4, 5, 6, 7. The CRISPR–Cpf1 system, a new class 2 CRISPR–Cas system, mediates robust DNA interference in human cells1, 8, 9, 10. Although functionally conserved, Cpf1 and Cas9 differ in many aspects including their guide RNAs and substrate specificity. Here we report the 2.38?? crystal structure of the CRISPR RNA (crRNA)-bound Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1). LbCpf1 has a triangle-shaped architecture with a large positively charged channel at the centre. Recognized by the oligonucleotide-binding domain of LbCpf1, the crRNA adopts a highly distorted conformation stabilized by extensive intramolecular interactions and the (Mg(H2O)6)2+ ion. The oligonucleotide-binding domain also harbours a looped-out helical domain that is important for LbCpf1 substrate binding. Binding of crRNA or crRNA lacking the guide sequence induces marked conformational changes but no oligomerization of LbCpf1. Our study reveals the crRNA recognition mechanism and provides insight into crRNA-guided substrate binding of LbCpf1, establishing a framework for engineering LbCpf1 to improve its efficiency and specificity for genome editing.

赞(0) 打赏
未经允许不得转载:基因君官网 » 三篇Nature文章揭示CRISPR/Cas9基因组编辑取得重大进展
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

健康一生

apasstour 医健游测序宝