2015年9月9日 讯 /生物谷BIOON/ –来自伦敦国王学院的科学家近日通过研究发现,一种用于特殊的基因特性或可帮助预测某些疾病的早期发病情况,比如阿尔兹海默氏症,相关研究刊登于国际杂志Genome Biology上。该研究中研究者旨在在65岁的老年个体机体中定义一些和健康老化相关的基因特性,而利用分子特性研究者常常可以进行年龄相关疾病早期风险的判断,这就可以帮助寻找指示疾病的新型指示器。
研究者James Timmons教授表示,我们利用出生年份或实足年龄就可以个体是否享有医疗保险,而很多人都知道所有的60岁个体似乎并不都是可以得到保险的,本文研究中,研究人员首次阐明了人类机体生物学年龄的强大分子特性,而且还可以转变方法来使生物学年龄用来帮助进行医疗决策,这其中就包括鉴别出哪些个体更易患阿尔兹海默氏症,从而帮助提前制定治疗策略。
文章中,研究人员分析了65岁的健康老年个体机体中的RNA,并且利用相关信息发现了可以指示健康老化的150个RNA基因的特性,这些基因特性可以作为可靠的预测子来指示年龄相关的疾病;利用RNA的分子特性研究人员随后开发出了一种“健康年龄基因分值”以此来检测并且对比不同个体的RNA特性信息,而且分数越高往往和个体的健康程度越好直接相关。
随后研究者对70岁的老年个体机体的RNA信息进行分析,并且分析了这些个体在过去20年里的健康数据,尽管这些个体都是在同一年内出生的,但对其机体RNA信息进行分析却发现了个体的健康年龄基因分值出现了广泛分布的情况,或者出现了4倍范围的变化,这些改变或许就和个体的长期健康相关。
研究者指出,尤其对于患阿尔兹海默氏症的病人而言,其机体血液中的健康老化的RNA特性发生了变化,而且健康年龄的基因分值较低,Timmons教授表示,进行首次血液检测就可以帮助揭示血液及和痴呆症相关的大脑区域中相同类型的分子调节信息,这样就可以帮助进行痴呆症的预测,而大量研究证据显示,人类的痴呆症或许可以被称之为机体加速老化或健康老化程序激活失败的一种表现形式。
进行早期干预对于有效治疗阿尔兹海默氏症非常关键,而且研究者表示,健康老化的基因分值也可以同其它方法进行整合来帮助决定哪些中年个体应当早期进入临床的干预治疗阶段,从而有效预防中年个体早期阿尔兹海默氏症的表现。(基因宝jiyinbao.com)
本文系生物谷原创编译整理,欢迎转载!转载请注明来源并附原文链接。更多资讯请下载生物谷APP.
A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status
Sanjana Sood12, Iain J. Gallagher13, Katie Lunnon124, Eric Rullman5, Aoife Keohane4, Hannah Crossland26, Bethan E. Phillips6, Tommy Cederholm7, Thomas Jensen8, Luc JC van Loon9, Lars Lannfelt10, William E. Kraus11, Philip J. Atherton6, Robert Howard4, Thomas Gustafsson5, Angela Hodges4 and James A. Timmons12*
Background Diagnostics of the human ageing process may help predict future healthcare needs or guide preventative measures for tackling diseases of older age. We take a transcriptomics approach to build the first reproducible multi-tissue RNA expression signature by gene-chip profiling tissue from sedentary normal subjects who reached 65 years of age in good health. Results One hundred and fifty probe-sets form an accurate classifier of young versus older muscle tissue and this healthy ageing RNA classifier performed consistently in independent cohorts of human muscle, skin and brain tissue (n = 594, AUC = 0.83–0.96) and thus represents a biomarker for biological age. Using the Uppsala Longitudinal Study of Adult Men birth-cohort (n = 108) we demonstrate that the RNA classifier is insensitive to confounding lifestyle biomarkers, while greater gene score at age 70 years is independently associated with better renal function at age 82 years and longevity. The gene score is ‘up-regulated’ in healthy human hippocampus with age, and when applied to blood RNA profiles from two large independent age-matched dementia case–control data sets (n = 717) the healthy controls have significantly greater gene scores than those with cognitive impairment. Alone, or when combined with our previously described prototype Alzheimer disease (AD) RNA ‘disease signature’, the healthy ageing RNA classifier is diagnostic for AD. Conclusions We identify a novel and statistically robust multi-tissue RNA signature of human healthy ageing that can act as a diagnostic of future health, using only a peripheral blood sample. This RNA signature has great potential to assist research aimed at finding treatments for and/or management of AD and other ageing-related conditions.